
Linux Kernel and Driver Development Training

Linux Kernel and Driver
Development Training

Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Latest update: March 29, 2013.
Document updates and sources:
http://free-electrons.com/doc/training/linux-kernel

Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 1/496

http://free-electrons.com/doc/training/linux-kernel

Rights to copy

c© Copyright 2004-2013, Free Electrons
License: Creative Commons Attribution - Share Alike 3.0
http://creativecommons.org/licenses/by-sa/3.0/legalcode

You are free:

I to copy, distribute, display, and perform the work

I to make derivative works

I to make commercial use of the work

Under the following conditions:

I Attribution. You must give the original author credit.

I Share Alike. If you alter, transform, or build upon this work, you may distribute
the resulting work only under a license identical to this one.

I For any reuse or distribution, you must make clear to others the license terms of
this work.

I Any of these conditions can be waived if you get permission from the copyright
holder.

Your fair use and other rights are in no way affected by the above.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 2/496

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Electronic copies of these documents

I Electronic copies of your particular version of the materials are
available on:
http://free-electrons.com/doc/training/linux-kernel

I Open the corresponding documents and use them throughout
the course to look for explanations given earlier by the
instructor.

I You will need these electronic versions because we neither
print any index nor any table of contents (quite high
environmental cost for little added value)

I For future reference, see the first slide to see where document
updates will be available.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 3/496

http://free-electrons.com/doc/training/linux-kernel

Free Electrons: not a training company

Free Electrons is an engineering company, not a training company

I Training is just one of our activities

I Whether they are directly employed by Free Electrons, or
whether they are external developers that we know very well,
all our trainers are engineers first, with extensive on-the-job
experience.

I Free Electrons engineers spend most of their time on technical
projects, and share this experience through training sessions
and by keeping our training materials up to date.

I All our trainers also spend a lot of time contributing to the
user and developer community, by contributing to projects
(such as the Linux kernel, Buildroot and Barebox), and/or by
sharing technical information (through blog posts, training
materials and talks at international conferences)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 4/496

Free Electrons at a glance

I Created in 2004

I Locations: Orange, Toulouse, Saint Etienne / Lyon (France)

I Serving customers all around the world
See http://free-electrons.com/company/customers/

I Head count: 7
Only Free Software enthusiasts!

I Focus: Embedded Linux, Linux kernel, Android Free Software
/ Open Source for embedded and real-time systems.

I Activities: development, training, consulting, technical
support.

I Added value: get the best of the user and development
community and the resources it offers.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 5/496

http://free-electrons.com/company/customers/

Free Electrons: what’s special

I Engineers recruited in the heart of the embedded Linux
developer community.

I We are very familiar with the best solutions the community
offers to product developers.

I Contributing as much as possible to the community: code,
documentation, knowledge sharing, financial support.

I Our engineers regularly go to the top technical conferences.
We know other developers very well.

I Nothing proprietary in Free Electrons. Everything we produce
for our company is shared and transparent (in particular
training materials and even evaluations from all our training
sessions!).

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 6/496

Our main services

I Linux kernel and board support package development, to
support new an custom hardware: bootloader, initialization,
device drivers, power management...

I Linux kernel mainlining: integrate support for your hardware
in the official Linux kernel sources

I Android porting and customization

I System development and building environment. Buildroot,
OpenEmbedded and Yocto support.

I System integration: choosing the best components and
making a custom system.

I Boot time reduction

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 7/496

Free Electrons on-line resources

I All our training materials:
http://free-electrons.com/docs/

I Technical blog:
http://free-electrons.com/blog/

I Quarterly newsletter:
http://lists.free-

electrons.com/mailman/listinfo/newsletter

I News and discussions (LinkedIn):
http://linkedin.com/groups/Free-Electrons-4501089

I Quick news (Twitter):
http://twitter.com/free_electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 8/496

http://free-electrons.com/docs/
http://free-electrons.com/blog/
http://lists.free-electrons.com/mailman/listinfo/newsletter
http://lists.free-electrons.com/mailman/listinfo/newsletter
http://linkedin.com/groups/Free-Electrons-4501089
http://twitter.com/free_electrons

Generic course information

Generic course
information
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 9/496

Hardware used in this training session

Calao Systems USB-A9263 Supported in mainstream Linux since
version 2.6.27!

I AT91SAM9263 ARM CPU

I 64 MB RAM, 256 MB flash

I 2 USB 2.0 host, 1 USB device

I 100 Mbit Ethernet port

I Powered by USB!

I Serial and JTAG through this USB
port.

I Multiple extension boards.

I Approximately 160 EUR (V.A.T.
not included)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 10/496

Participate!

During the lectures...

I Don’t hesitate to ask questions. Other people in the audience
may have similar questions too.

I This helps the trainer to detect any explanation that wasn’t
clear or detailed enough.

I Don’t hesitate to share your experience, for example to
compare Linux / Android with other operating systems used
in your company.

I Your point of view is most valuable, because it can be similar
to your colleagues’ and different from the trainer’s.

I Your participation can make our session more interactive and
make the topics easier to learn.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 11/496

Practical lab guidelines

During practical labs...

I We cannot support more than 8 workstations at once (each
with its board and equipment). Having more would make the
whole class progress slower, compromising the coverage of the
whole training agenda (exception for public sessions: up to 10
people).

I So, if you are more than 8 participants, please form up to 8
working groups.

I Open the electronic copy of your lecture materials, and use it
throughout the practical labs to find the slides you need again.

I Don’t copy and paste from the PDF slides.
The slides contain UTF-8 characters that look the same as
ASCII ones, but won’t be understood by shells or compilers.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 12/496

Cooperate!

As in the Free Software and Open Source community, cooperation
during practical labs is valuable in this training session:

I If you complete your labs before other people, don’t hesitate
to help other people and investigate the issues they face. The
faster we progress as a group, the more time we have to
explore extra topics.

I Explain what you understood to other participants when
needed. It also helps to consolidate your knowledge.

I Don’t hesitate to report potential bugs to your instructor.

I Don’t hesitate to look for solutions on the Internet as well.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 13/496

Command memento sheet

I This memento sheet gives
command examples for the most
typical needs (looking for files,
extracting a tar archive...)

I It saves us 1 day of UNIX / Linux
command line training.

I Our best tip: in the command line
shell, always hit the Tab key to
complete command names and file
paths. This avoids 95% of typing
mistakes.

I Get an electronic copy on
http://free-electrons.com/

docs/command-line

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 14/496

http://free-electrons.com/docs/command-line
http://free-electrons.com/docs/command-line

vi basic commands

I The vi editor is very useful to
make quick changes to files in a
embedded target.

I Though not very user friendly at
first, vi is very powerful and its
main 15 commands are easy to
learn and are sufficient for 99% of
everyone’s needs!

I Get an electronic copy on
http://free-electrons.com/

docs/command-line

I You can also take the quick tutorial
by running vimtutor. This is a
worthy investment!

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 15/496

http://free-electrons.com/docs/command-line
http://free-electrons.com/docs/command-line

Linux Kernel Introduction

Linux Kernel
Introduction
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 16/496

Linux Kernel Introduction

Linux features

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 17/496

Linux kernel in the system

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 18/496

History

I The Linux kernel is one component of a system, which also
requires libraries and applications to provide features to end
users.

I The Linux kernel was created as a hobby in 1991 by a Finnish
student, Linus Torvalds.

I Linux quickly started to be used as the kernel for free software
operating systems

I Linus Torvalds has been able to create a large and dynamic
developer and user community around Linux.

I Nowadays, hundreds of people contribute to each kernel
release, individuals or companies big and small.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 19/496

Linux license

I The whole Linux sources are Free Software released under the
GNU General Public License version 2 (GPL v2).

I For the Linux kernel, this basically implies that:
I When you receive or buy a device with Linux on it, you should

receive the Linux sources, with the right to study, modify and
redistribute them.

I When you produce Linux based devices, you must release the
sources to the recipient, with the same rights, with no
restriction..

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 20/496

Linux kernel key features

I Portability and hardware
support. Runs on most
architectures.

I Scalability. Can run on
super computers as well as
on tiny devices (4 MB of
RAM is enough).

I Compliance to standards
and interoperability.

I Exhaustive networking
support.

I Security. It can’t hide its
flaws. Its code is reviewed
by many experts.

I Stability and reliability.

I Modularity. Can include
only what a system needs
even at run time.

I Easy to program. You can
learn from existing code.
Many useful resources on
the net.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 21/496

Supported hardware architectures

I See the arch/ directory in the kernel sources

I Minimum: 32 bit processors, with or without MMU, and gcc

support

I 32 bit architectures (arch/ subdirectories)
Examples: arm, avr32, blackfin, m68k, microblaze,

mips, score, sparc, um

I 64 bit architectures:
Examples: alpha, arm64, ia64, sparc64, tile

I 32/64 bit architectures
Examples: powerpc, x86, sh

I Find details in kernel sources: arch/<arch>/Kconfig,
arch/<arch>/README, or Documentation/<arch>/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 22/496

System calls

I The main interface between the kernel and userspace is the
set of system calls

I About 300 system calls that provide the main kernel services
I File and device operations, networking operations,

inter-process communication, process management, memory
mapping, timers, threads, synchronization primitives, etc.

I This interface is stable over time: only new system calls can
be added by the kernel developers

I This system call interface is wrapped by the C library, and
userspace applications usually never make a system call
directly but rather use the corresponding C library function

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 23/496

Virtual filesystems

I Linux makes system and kernel information available in
user-space through virtual filesystems.

I Virtual filesystems allow applications to see directories and
files that do not exist on any real storage: they are created on
the fly by the kernel

I The two most important virtual filesystems are
I proc, usually mounted on /proc:

Operating system related information (processes, memory
management parameters...)

I sysfs, usually mounted on /sys:
Representation of the system as a set of devices and buses.
Information about these devices.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 24/496

Linux Kernel Introduction

Linux versioning scheme and
development process

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 25/496

Until 2.6 (1)

I One stable major branch every 2 or 3 years
I Identified by an even middle number
I Examples: 1.0.x, 2.0.x, 2.2.x, 2.4.x

I One development branch to integrate new functionalities and
major changes

I Identified by an odd middle number
I Examples: 2.1.x, 2.3.x, 2.5.x
I After some time, a development version becomes the new base

version for the stable branch

I Minor releases once in while: 2.2.23, 2.5.12, etc.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 26/496

Until 2.6 (2)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 27/496

Changes since Linux 2.6 (1)

I Since 2.6.0, kernel developers have been able to introduce
lots of new features one by one on a steady pace, without
having to make major changes in existing subsystems.

I So far, there was no need to create a new development branch
(such as 2.7), which would massively break compatibility with
the stable branch.

I Thanks to this, more features are released to users at a
faster pace.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 28/496

Changes since Linux 2.6 (2)

Since 2.6.14, the kernel developers agreed on the following
development model:

I After the release of a 2.6.x version, a two-weeks merge
window opens, during which major additions are merged.

I The merge window is closed by the release of test version
2.6.(x+1)-rc1

I The bug fixing period opens, for 6 to 10 weeks.

I At regular intervals during the bug fixing period,
2.6.(x+1)-rcY test versions are released.

I When considered sufficiently stable, kernel 2.6.(x+1) is
released, and the process starts again.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 29/496

Merge and bug fixing windows

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 30/496

More stability for the kernel source tree

I Issue: bug and security fixes only released
for most recent stable kernel versions.

I Some people need to have a recent kernel,
but with long term support for security
updates.

I You could get long term support from a
commercial embedded Linux provider.

I You could reuse sources for the kernel
used in Ubuntu Long Term Support
releases (5 years of free security updates).

I The http://kernel.org front page
shows which versions will be supported for
some time (up to 2 or 3 years), and which
ones won’t be supported any more
(”EOL: End Of Life”)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 31/496

http://kernel.org

New 3.x branch

I From 2003 to 2011, the official kernel versions were named
2.6.x.

I Linux 3.0 was released in July 2011
I There is no change to the development model, only a change

to the numbering scheme
I Official kernel versions will be named 3.x (3.0, 3.1, 3.2,

etc.)
I Stabilized versions will be named 3.x.y (3.0.2, 3.4.3, etc.)
I It effectively only removes a digit compared to the previous

numbering scheme

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 32/496

What’s new in each Linux release?

I The official list of changes for each Linux release is just a
huge list of individual patches!
commit aa6e52a35d388e730f4df0ec2ec48294590cc459
Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Date: Wed Jul 13 11:29:17 2011 +0200

at91: at91-ohci: support overcurrent notification

Several USB power switches (AIC1526 or MIC2026) have a digital output
that is used to notify that an overcurrent situation is taking
place. This digital outputs are typically connected to GPIO inputs of
the processor and can be used to be notified of those overcurrent
situations.

Therefore, we add a new overcurrent_pin[] array in the at91_usbh_data
structure so that boards can tell the AT91 OHCI driver which pins are
used for the overcurrent notification, and an overcurrent_supported
boolean to tell the driver whether overcurrent is supported or not.

The code has been largely borrowed from ohci-da8xx.c and
ohci-s3c2410.c.

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>

I Very difficult to find out the key changes and to get the global
picture out of individual changes.

I Fortunately, there are some useful resources available
I http://wiki.kernelnewbies.org/LinuxChanges
I http://lwn.net
I http://linuxfr.org, for French readers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 33/496

http://wiki.kernelnewbies.org/LinuxChanges
http://lwn.net
http://linuxfr.org

Practical lab - Training Setup

Prepare your lab environment

I Download the lab archive

I Enforce correct permissions

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 34/496

Embedded Linux Kernel Usage

Embedded Linux
Kernel Usage
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 35/496

Embedded Linux Kernel Usage

Linux kernel sources

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 36/496

Location of kernel sources

I The official version of the Linux kernel, as released by Linus
Torvalds is available at http://www.kernel.org

I This version follows the well-defined development model of the
kernel

I However, it may not contain the latest development from a
specific area, due to the organization of the development
model and because features in development might not be
ready for mainline inclusion

I Many kernel sub-communities maintain their own kernel, with
usually newer but less stable features

I Architecture communities (ARM, MIPS, PowerPC, etc.),
device drivers communities (I2C, SPI, USB, PCI, network,
etc.), other communities (real-time, etc.)

I They generally don’t release official versions, only development
trees are available

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 37/496

http://www.kernel.org

Linux kernel size (1)

I Linux 3.1 sources:
Raw size: 434 MB (39,400 files, approx 14,800,000 lines)
gzip compressed tar archive: 93 MB
bzip2 compressed tar archive: 74 MB (better)
xz compressed tar archive: 62 MB (best)

I Minimum Linux 2.6.29 compiled kernel size with
CONFIG_EMBEDDED, for a kernel that boots a QEMU PC (IDE
hard drive, ext2 filesystem, ELF executable support):
532 KB (compressed), 1325 KB (raw)

I Why are these sources so big?
Because they include thousands of device drivers, many
network protocols, support many architectures and
filesystems...

I The Linux core (scheduler, memory management...) is pretty
small!

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 38/496

Linux kernel size (2)

As of kernel version 3.2.

I drivers/: 53.65%

I arch/: 20.78%

I fs/: 6.88%

I sound/: 5.04%

I net/: 4.33%

I include/: 3.80%

I firmware/: 1.46%

I kernel/: 1.10%

I tools/: 0.56%

I mm/: 0.53%

I scripts/: 0.44%

I security/: 0.40%

I crypto/: 0.38%

I lib/: 0.30%

I block/: 0.13%

I ipc/: 0.04%

I virt/: 0.03%

I init/: 0.03%

I samples/: 0.02%

I usr/: 0%

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 39/496

Getting Linux sources

I Full tarballs
I Contain the complete kernel sources: long to download and

uncompress, but must be done at least once
I Example:

http://www.kernel.org/pub/linux/kernel/v3.0/linux-

3.1.3.tar.xz

I Extract command:
tar Jxf linux-3.1.3.tar.xz

I Incremental patches between versions
I It assumes you already have a base version and you apply the

correct patches in the right order. Quick to download and
apply

I Examples:
http://www.kernel.org/pub/linux/kernel/v3.0/patch-3.1.xz

(3.0 to 3.1)
http://www.kernel.org/pub/linux/kernel/v3.0/patch-3.1.3.xz

(3.1 to 3.1.3)

I All previous kernel versions are available in
http://kernel.org/pub/linux/kernel/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 40/496

http://www.kernel.org/pub/linux/kernel/v3.0/linux-3.1.3.tar.xz
http://www.kernel.org/pub/linux/kernel/v3.0/linux-3.1.3.tar.xz
http://www.kernel.org/pub/linux/kernel/v3.0/patch-3.1.xz
http://www.kernel.org/pub/linux/kernel/v3.0/patch-3.1.3.xz
http://kernel.org/pub/linux/kernel/

Patch

I A patch is the difference between two source trees
I Computed with the diff tool, or with more elaborate version

control systems

I They are very common in the open-source community

I Excerpt from a patch:

diff -Nru a/Makefile b/Makefile

--- a/Makefile 2005-03-04 09:27:15 -08:00

+++ b/Makefile 2005-03-04 09:27:15 -08:00

@@ -1,7 +1,7 @@

VERSION = 2

PATCHLEVEL = 6

SUBLEVEL = 11

-EXTRAVERSION =

+EXTRAVERSION = .1

NAME=Woozy Numbat

DOCUMENTATION

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 41/496

Contents of a patch

I One section per modified file, starting with a header
diff -Nru a/Makefile b/Makefile

--- a/Makefile 2005-03-04 09:27:15 -08:00

+++ b/Makefile 2005-03-04 09:27:15 -08:00

I One sub-section per modified part of the file, starting with
header with the affected line numbers
@@ -1,7 +1,7 @@

I Three lines of context before the change
VERSION = 2

PATCHLEVEL = 6

SUBLEVEL = 11

I The change itself
-EXTRAVERSION =

+EXTRAVERSION = .1

I Three lines of context after the change
NAME=Woozy Numbat

DOCUMENTATION

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 42/496

Using the patch command

The patch command:

I Takes the patch contents on its standard input

I Applies the modifications described by the patch into the
current directory

patch usage examples:

I patch -p<n> < diff_file

I cat diff_file | patch -p<n>

I xzcat diff_file.xz | patch -p<n>

I bzcat diff_file.bz2 | patch -p<n>

I zcat diff_file.gz | patch -p<n>

I Notes:
I n: number of directory levels to skip in the file paths
I You can reverse apply a patch with the -R option
I You can test a patch with --dry-run option

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 43/496

Applying a Linux patch

Linux patches...

I Always applied to the x.y.<z-1> version
Can be downloaded in gzip, bzip2 or xz (much smaller)
compressed files.

I Always produced for n=1
(that’s what everybody does... do it too!)

I Need to run the patch command inside the kernel source
directory

I Linux patch command line example:

cd linux-3.0

xzcat ../patch-3.1.xz | patch -p1

xzcat ../patch-3.1.3.xz | patch -p1

cd ..; mv linux-3.0 linux-3.1.3

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 44/496

Kernel Source Code

Kernel Source
Code
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 45/496

Kernel Source Code

Linux Code and Device Drivers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 46/496

Supported kernel version

I The APIs covered in these training slides should be compliant
with Linux 3.6.

I We may also mention features in more recent kernels.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 47/496

Programming language

I Implemented in C like all Unix systems. (C was created to
implement the first Unix systems)

I A little Assembly is used too:
I CPU and machine initialization, exceptions
I Critical library routines.

I No C++ used, see http://www.tux.org/lkml/#s15-3

I All the code compiled with gcc
I Many gcc specific extensions used in the kernel code, any

ANSI C compiler will not compile the kernel
I A few alternate compilers are supported (Intel and Marvell)
I See http://gcc.gnu.org/onlinedocs/gcc-4.6.1/gcc/C-

Extensions.html

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 48/496

http://www.tux.org/lkml/#s15-3
http://gcc.gnu.org/onlinedocs/gcc-4.6.1/gcc/C-Extensions.html
http://gcc.gnu.org/onlinedocs/gcc-4.6.1/gcc/C-Extensions.html

No C library

I The kernel has to be standalone and can’t use user-space
code.

I Userspace is implemented on top of kernel services, not the
opposite.

I Kernel code has to supply its own library implementations
(string utilities, cryptography, uncompression ...)

I So, you can’t use standard C library functions in kernel code.
(printf(), memset(), malloc(),...).

I Fortunately, the kernel provides similar C functions for your
convenience, like printk(), memset(), kmalloc(), ...

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 49/496

Portability

I The Linux kernel code is designed to be portable

I All code outside arch/ should be portable
I To this aim, the kernel provides macros and functions to

abstract the architecture specific details
I Endianness

I cpu_to_be32
I cpu_to_le32
I be32_to_cpu
I le32_to_cpu

I I/O memory access
I Memory barriers to provide ordering guarantees if needed
I DMA API to flush and invalidate caches if needed

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 50/496

No floating point computation

I Never use floating point numbers in kernel code. Your code
may be run on a processor without a floating point unit (like
on ARM).

I Don’t be confused with floating point related configuration
options

I They are related to the emulation of floating point operation
performed by the user space applications, triggering an
exception into the kernel.

I Using soft-float, i.e. emulation in user-space, is however
recommended for performance reasons.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 51/496

No stable Linux internal API 1/3

I The internal kernel API to implement kernel code can undergo
changes between two stable 2.6.x or 3.x releases. A
stand-alone driver compiled for a given version may no longer
compile or work on a more recent one. See
Documentation/stable_api_nonsense.txt in kernel
sources for reasons why.

I Of course, the external API must not change (system calls,
/proc, /sys), as it could break existing programs. New
features can be added, but kernel developers try to keep
backward compatibility with earlier versions, at least for 1 or
several years.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 52/496

http://free-electrons.com/kerneldoc/latest/stable_api_nonsense.txt

No stable Linux internal API 2/3

I Whenever a developer changes an internal API, (s)he also has
to update all kernel code which uses it. Nothing broken!

I Works great for code in the mainline kernel tree.

I Difficult to keep in line for out of tree or closed-source drivers!

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 53/496

No stable Linux internal API 3/3

I USB example
I Linux has updated its USB internal API at least 3 times (fixes,

security issues, support for high-speed devices) and has now
the fastest USB bus speeds (compared to other systems)

I Windows XP also had to rewrite its USB stack 3 times. But,
because of closed-source, binary drivers that can’t be updated,
they had to keep backward compatibility with all earlier
implementation. This is very costly (development, security,
stability, performance).

I See “Myths, Lies, and Truths about the Linux Kernel”, by
Greg K.H., for details about the kernel development process:
http://kroah.com/log/linux/ols_2006_keynote.html

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 54/496

http://kroah.com/log/linux/ols_2006_keynote.html

Kernel memory constraints

I No memory protection

I Accessing illegal memory locations result in (often fatal)
kernel oopses.

I Fixed size stack (8 or 4 KB). Unlike in userspace, there’s no
way to make it grow.

I Kernel memory can’t be swapped out (for the same reasons).

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 55/496

Linux kernel licensing constraints

I The Linux kernel is licensed under the GNU General Public
License version 2

I This license gives you the right to use, study, modify and share
the software freely

I However, when the software is redistributed, either modified
or unmodified, the GPL requires that you redistribute the
software under the same license, with the source code

I If modifications are made to the Linux kernel (for example to
adapt it to your hardware), it is a derivative work of the kernel,
and therefore must be released under GPLv2

I The validity of the GPL on this point has already been verified
in courts

I However, you’re only required to do so
I At the time the device starts to be distributed
I To your customers, not to the entire world

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 56/496

Proprietary code and the kernel

I It is illegal to distribute a binary kernel that includes statically
compiled proprietary drivers

I The kernel modules are a gray area: are they derived works of
the kernel or not?

I The general opinion of the kernel community is that
proprietary drivers are bad: http://j.mp/fbyuuH

I From a legal point of view, each driver is probably a different
case

I Is it really useful to keep your drivers secret?

I There are some examples of proprietary drivers, like the Nvidia
graphics drivers

I They use a wrapper between the driver and the kernel
I Unclear whether it makes it legal or not

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 57/496

http://j.mp/fbyuuH

Advantages of GPL drivers 1/2

I You don’t have to write your driver from scratch. You can
reuse code from similar free software drivers.

I You get free community contributions, support, code review
and testing. Proprietary drivers (even with sources) don’t get
any.

I Your drivers can be freely shipped by others (mainly by
distributions).

I Closed source drivers often support a given kernel version. A
system with closed source drivers from 2 different sources is
unmanageable.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 58/496

Advantages of GPL drivers 2/2

I Users and the community get a positive image of your
company. Makes it easier to hire talented developers.

I You don’t have to supply binary driver releases for each kernel
version and patch version (closed source drivers).

I Drivers have all privileges. You need the sources to make sure
that a driver is not a security risk.

I Your drivers can be statically compiled into the kernel (useful
to have a kernel image with all drivers needed at boot time)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 59/496

Advantages of in-tree kernel drivers

I Once your sources are accepted in the mainline tree, they are
maintained by people making changes.

I Cost-free maintenance, security fixes and improvements.

I Easy access to your sources by users.

I Many more people reviewing your code.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 60/496

Userspace device drivers 1/2

I Possible to implement device drivers in user-space!

I Such drivers just need access to the devices through
minimum, generic kernel drivers.

I Examples
I Printer and scanner drivers (on top of generic parallel port or

USB drivers)
I X drivers: low level kernel drivers + user space X drivers.
I Userspace drivers based on UIO. See

Documentation/DocBook/uio-howto in the kernel
documentation for details about UIO and the Using UIO on an
Embedded platform talk at ELC 2008 (http://j.mp/tBzayM)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 61/496

http://free-electrons.com/kerneldoc/latest/DocBook/uio-howto
http://j.mp/tBzayM

Userspace device drivers 2/2

I Advantages
I No need for kernel coding skills. Easier to reuse code between

devices.
I Drivers can be written in any language, even Perl!
I Drivers can be kept proprietary.
I Driver code can be killed and debugged. Cannot crash the

kernel.
I Can be swapped out (kernel code cannot be).
I Can use floating-point computation.
I Less in-kernel complexity.

I Drawbacks
I Less straightforward to handle interrupts.
I Increased latency vs. kernel code.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 62/496

Kernel Source Code

Linux sources

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 63/496

Linux sources structure 1/4

I arch/<architecture>
I Architecture specific code

I arch/<architecture>/include/asm
I Architecture and machine dependent headers

I arch/<architecture>/mach-<machine>
I Machine/board specific code

I block
I Block layer core

I COPYING
I Linux copying conditions (GNU GPL)

I CREDITS
I Linux main contributors

I crypto/
I Cryptographic libraries

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 64/496

Linux sources structure 2/4

I Documentation/
I Kernel documentation. Don’t miss it!

I drivers/
I All device drivers except sound ones (usb, pci...)

I fs/
I Filesystems (fs/ext3/, etc.)

I include/
I Kernel headers

I include/linux
I Linux kernel core headers

I init/
I Linux initialization (including main.c)

I ipc/
I Code used for process communication

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 65/496

Linux sources structure 3/4

I Kbuild
I Part of the kernel build system

I kernel/
I Linux kernel core (very small!)

I lib/
I Misc library routines (zlib, crc32...)

I MAINTAINERS
I Maintainers of each kernel part. Very useful!

I Makefile
I Top Linux Makefile (sets arch and version)

I mm/
I Memory management code (small too!)

I net/
I Network support code (not drivers)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 66/496

Linux sources structure 4/4

I README
I Overview and building instructions

I REPORTING-BUGS
I Bug report instructions

I samples/
I Sample code (markers, kprobes, kobjects...)

I scripts/
I Scripts for internal or external use

I security/
I Security model implementations (SELinux...)

I sound/
I Sound support code and drivers

I usr/
I Code to generate an initramfs cpio archive.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 67/496

Accessing development sources 1/2

I Useful if you are involved in kernel development or if you
found a bug in the source code.

I Kernel development sources are now managed with Git:
http://git-scm.com/

I You can browse Linus’ Git tree (if you just need to check a
few files): http://git.kernel.org/?p=linux/kernel/

git/torvalds/linux.git;a=tree (http://j.mp/QaOrzP)
I You can also directly use Git on your workstation

I Debian / Ubuntu: install the git package

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 68/496

http://git-scm.com/
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=tree
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=tree
http://j.mp/QaOrzP

Accessing development sources 2/2

I Choose a Git development tree on http://git.kernel.org/

I Get a local copy (“clone”) of this tree.
I git clone git://git.kernel.org/pub/scm/linux/

kernel/git/torvalds/linux.git

I Update your copy whenever needed: git pull

I More details in our chapter about Git

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 69/496

http://git.kernel.org/

Kernel Source Code

Kernel source management tools

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 70/496

Cscope

I http://cscope.sourceforge.net/
I Tool to browse source code (mainly C, but also C++ or Java)
I Supports huge projects like the Linux kernel. Takes less than 1

min. to index Linux 2.6.17 sources (fast!)
I Can be used from editors like vim and emacs.
I In Linux kernel sources, run it with: cscope -Rk (see man

cscope for details)
I KScope: graphical front-end (kscope package in Ubuntu

12.04 and later)
I Allows searching for a symbol, a definition, functions, strings,

files, etc.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 71/496

http://cscope.sourceforge.net/

Cscope screenshot

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 72/496

LXR: Linux Cross Reference

I http://sourceforge.net/projects/lxr

I Generic source indexing tool and code browser
I Web server based, very easy and fast to use
I Very easy to find the declaration, implementation or usage of

symbols
I Supports C and C++
I Supports huge code projects such as the Linux kernel (431 MB

of source code in version 3.0).
I Takes a little time and patience to setup (configuration,

indexing, web server configuration)
I You don’t need to set up LXR by yourself. Use our

http://lxr.free-electrons.com server!

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 73/496

http://sourceforge.net/projects/lxr
http://lxr.free-electrons.com

LXR screenshot

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 74/496

Practical lab - Kernel Source Code

I Get the Linux kernel sources

I Apply patches

I Explore sources manually

I Use automated tools to explore the
source code

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 75/496

Kernel Source Code

Kernel configuration

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 76/496

Kernel configuration and build system

I The kernel configuration and build system is based on
multiple Makefiles

I One only interacts with the main Makefile, present at the
top directory of the kernel source tree

I Interaction takes place
I using the make tool, which parses the Makefile
I through various targets, defining which action should be done

(configuration, compilation, installation, etc.). Run
make help to see all available targets.

I Example
I cd linux-3.6.x/
I make <target>

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 77/496

Kernel configuration (1)

I The kernel contains thousands of device drivers, filesystem
drivers, network protocols and other configurable items

I Thousands of options are available, that are used to
selectively compile parts of the kernel source code

I The kernel configuration is the process of defining the set of
options with which you want your kernel to be compiled

I The set of options depends
I On your hardware (for device drivers, etc.)
I On the capabilities you would like to give to your kernel

(network capabilities, filesystems, real-time, etc.)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 78/496

Kernel configuration (2)

I The configuration is stored in the .config file at the root of
kernel sources

I Simple text file, key=value style

I As options have dependencies, typically never edited by hand,
but through graphical or text interfaces:

I make xconfig, make gconfig (graphical)
I make menuconfig, make nconfig (text)
I You can switch from one to another, they all load/save the

same .config file, and show the same set of options

I To modify a kernel in a GNU/Linux distribution: the
configuration files are usually released in /boot/, together
with kernel images: /boot/config-3.2.0-31-generic

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 79/496

Kernel or module?

I The kernel image is a single file, resulting from the linking
of all object files that correspond to features enabled in the
configuration

I This is the file that gets loaded in memory by the bootloader
I All included features are therefore available as soon as the

kernel starts, at a time where no filesystem exists

I Some features (device drivers, filesystems, etc.) can however
be compiled as modules

I Those are plugins that can be loaded/unloaded dynamically to
add/remove features to the kernel

I Each module is stored as a separate file in the filesystem,
and therefore access to a filesystem is mandatory to use
modules

I This is not possible in the early boot procedure of the kernel,
because no filesystem is available

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 80/496

Kernel option types

I There are different types of options
I bool options, they are either

I true (to include the feature in the kernel) or
I false (to exclude the feature from the kernel)

I tristate options, they are either
I true (to include the feature in the kernel image) or
I module (to include the feature as a kernel module) or
I false (to exclude the feature)

I int options, to specify integer values
I string options, to specify string values

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 81/496

Kernel option dependencies

I There are dependencies between kernel options

I For example, enabling a network driver requires the network
stack to be enabled

I Two types of dependencies
I depends on dependencies. In this case, option A that depends

on option B is not visible until option B is enabled
I select dependencies. In this case, with option A depending

on option B, when option A is enabled, option B is
automatically enabled

I make xconfig allows to see all options, even those that
cannot be selected because of missing dependencies. In this
case, they are displayed in gray

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 82/496

make xconfig

make xconfig

I The most common graphical interface to configure the kernel.

I Make sure you read
help -> introduction: useful options!

I File browser: easier to load configuration files

I Search interface to look for parameters

I Required Debian / Ubuntu packages: libqt4-dev g++

(libqt3-mt-dev for older kernel releases)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 83/496

make xconfig screenshot

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 84/496

make xconfig search interface

Looks for a keyword in the parameter name. Allows to select or
unselect found parameters.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 85/496

Kernel configuration options

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 86/496

Corresponding .config file excerpt

Options are grouped by sections and are prefixed with CONFIG_.

#

CD-ROM/DVD Filesystems

#

CONFIG_ISO9660_FS=m

CONFIG_JOLIET=y

CONFIG_ZISOFS=y

CONFIG_UDF_FS=y

CONFIG_UDF_NLS=y

#

DOS/FAT/NT Filesystems

#

CONFIG_MSDOS_FS is not set

CONFIG_VFAT_FS is not set

CONFIG_NTFS_FS=m

CONFIG_NTFS_DEBUG is not set

CONFIG_NTFS_RW=y

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 87/496

make gconfig

make gconfig

I GTK based graphical
configuration interface.
Functionality similar to that
of make xconfig.

I Just lacking a search
functionality.

I Required Debian packages:
libglade2-dev

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 88/496

make menuconfig

make menuconfig

I Useful when no graphics are
available. Pretty convenient
too!

I Same interface found in
other tools: BusyBox,
Buildroot...

I Required Debian packages:
libncurses-dev

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 89/496

make nconfig

make nconfig

I A newer, similar text
interface

I More user friendly (for
example, easier to access
help information).

I Required Debian packages:
libncurses-dev

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 90/496

make oldconfig

make oldconfig

I Needed very often!

I Useful to upgrade a .config file from an earlier kernel release

I Issues warnings for configuration parameters that no longer
exist in the new kernel.

I Asks for values for new parameters

If you edit a .config file by hand, it’s strongly recommended to
run make oldconfig afterwards!

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 91/496

make allnoconfig

make allnoconfig

I Only sets strongly recommended settings to y.

I Sets all other settings to n.

I Very useful in embedded systems to select only the minimum
required set of features and drivers.

I Much more convenient than unselecting hundreds of features
one by one!

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 92/496

Undoing configuration changes

A frequent problem:

I After changing several kernel configuration settings, your
kernel no longer works.

I If you don’t remember all the changes you made, you can get
back to your previous configuration:
$ cp .config.old .config

I All the configuration interfaces of the kernel (xconfig,
menuconfig, allnoconfig...) keep this .config.old

backup copy.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 93/496

Configuration per architecture

I The set of configuration options is architecture dependent
I Some configuration options are very architecture-specific
I Most of the configuration options (global kernel options,

network subsystem, filesystems, most of the device drivers) are
visible in all architectures.

I By default, the kernel build system assumes that the kernel is
being built for the host architecture, i.e. native compilation

I The architecture is not defined inside the configuration, but at
a higher level

I We will see later how to override this behaviour, to allow the
configuration of kernels for a different architecture

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 94/496

Overview of kernel options (1)

I General setup
I Local version - append to kernel release allows to concatenate

an arbitrary string to the kernel version that a user can get
using uname -r. Very useful for support!

I Support for swap, can usually be disabled on most embedded
devices

I Configure standard kernel features (expert users) allows to
remove features from the kernel to reduce its size. Powerful,
but use with care!

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 95/496

Overview of kernel options (2)

I Loadable module support
I Allows to enable or completely disable module support. If your

system doesn’t need kernel modules, best to disable since it
saves a significant amount of space and memory

I Enable the block layer
I If CONFIG_EXPERT is enabled, the block layer can be

completely removed. Embedded systems using only flash
storage can safely disable the block layer

I Processor type and features (x86) or System type (ARM) or
CPU selection (MIPS)

I Allows to select the CPU or machine for which the kernel must
be compiled

I On x86, only optimization-related, on other architectures very
important since there’s no compatibility

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 96/496

Overview of kernel options (3)

I Kernel features
I Tickless system, which allows to disable the regular timer tick

and use on-demand ticks instead. Improves power savings
I High resolution timer support. By default, the resolution of

timer is the tick resolution. With high resolution timers, the
resolution is as precise as the hardware can give

I Preemptible kernel enables the preemption inside the kernel
code (the userspace code is always preemptible). See our
real-time presentation for details

I Power management
I Global power management option needed for all power

management related features
I Suspend to RAM, CPU frequency scaling, CPU idle control,

suspend to disk

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 97/496

Overview of kernel options (4)

I Networking support
I The network stack
I Networking options

I Unix sockets, needed for a form of inter-process
communication

I TCP/IP protocol with options for multicast, routing,
tunneling, Ipsec, Ipv6, congestion algorithms, etc.

I Other protocols such as DCCP, SCTP, TIPC, ATM
I Ethernet bridging, QoS, etc.

I Support for other types of network
I CAN bus, Infrared, Bluetooth, Wireless stack, WiMax stack,

etc.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 98/496

Overview of kernel options (5)

I Device drivers
I MTD is the subsystem for flash (NOR, NAND, OneNand,

battery-backed memory, etc.)
I Parallel port support
I Block devices, a few misc block drivers such as loopback,

NBD, etc.
I ATA/ATAPI, support for IDE disk, CD-ROM and tapes. A

new stack exists
I SCSI

I The SCSI core, needed not only for SCSI devices but also for
USB mass storage devices, SATA and PATA hard drives, etc.

I SCSI controller drivers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 99/496

Overview of kernel options (6)

I Device drivers (cont)
I SATA and PATA, the new stack for hard disks, relies on SCSI
I RAID and LVM, to aggregate hard drivers and do replication
I Network device support, with the network controller drivers.

Ethernet, Wireless but also PPP
I Input device support, for all types of input devices: keyboards,

mice, joysticks, touchscreens, tablets, etc.
I Character devices, contains various device drivers, amongst

them
I serial port controller drivers
I PTY driver, needed for things like SSH or telnet

I I2C, SPI, 1-wire, support for the popular embedded buses
I Hardware monitoring support, infrastructure and drivers for

thermal sensors

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 100/496

Overview of kernel options (7)

I Device drivers (cont)
I Watchdog support
I Multifunction drivers are drivers that do not fit in any other

category because the device offers multiple functionality at the
same time

I Multimedia support, contains the V4L and DVB subsystems,
for video capture, webcams, AM/FM cards, DVB adapters

I Graphics support, infrastructure and drivers for framebuffers
I Sound card support, the OSS and ALSA sound infrastructures

and the corresponding drivers
I HID devices, support for the devices that conform to the HID

specification (Human Input Devices)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 101/496

Overview of kernel options (8)

I Device drivers (cont)
I USB support

I Infrastructure
I Host controller drivers
I Device drivers, for devices connected to the embedded system
I Gadget controller drivers
I Gadget drivers, to let the embedded system act as a

mass-storage device, a serial port or an Ethernet adapter

I MMC/SD/SDIO support
I LED support
I Real Time Clock drivers
I Voltage and current regulators
I Staging drivers, crappy drivers being cleaned up

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 102/496

Overview of kernel options (9)

I For some categories of devices the driver is not implemented
inside the kernel

I Printers
I Scanners
I Graphics drivers used by X.org
I Some USB devices

I For these devices, the kernel only provides a mechanism to
access the hardware, the driver is implemented in userspace

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 103/496

Overview of kernel options (10)

I File systems
I The common Linux filesystems for block devices: ext2, ext3,

ext4
I Less common filesystems: XFS, JFS, ReiserFS, GFS2, OCFS2,

Btrfs
I CD-ROM filesystems: ISO9660, UDF
I DOS/Windows filesystems: FAT and NTFS
I Pseudo filesystems: proc and sysfs
I Miscellaneous filesystems, with amongst other flash filesystems

such as JFFS2, UBIFS, SquashFS, cramfs
I Network filesystems, with mainly NFS and SMB/CIFS

I Kernel hacking
I Debugging features useful for kernel developers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 104/496

Kernel Source Code

Compiling and installing the kernel
for the host system

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 105/496

Kernel compilation

I make
I in the main kernel source directory
I Remember to run make -j 4 if you have multiple CPU cores

to speed up the compilation process
I No need to run as root!

I Generates
I vmlinux, the raw uncompressed kernel image, at the ELF

format, useful for debugging purposes, but cannot be booted
I arch/<arch>/boot/*Image, the final, usually compressed,

kernel image that can be booted
I bzImage for x86, zImage for ARM, vmImage.gz for Blackfin,

etc.

I All kernel modules, spread over the kernel source tree, as .ko

files.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 106/496

Kernel installation

I make install
I Does the installation for the host system by default, so needs

to be run as root. Generally not used when compiling for an
embedded system, and it installs files on the development
workstation.

I Installs
I /boot/vmlinuz-<version>

Compressed kernel image. Same as the one in
arch/<arch>/boot

I /boot/System.map-<version>

Stores kernel symbol addresses
I /boot/config-<version>

Kernel configuration for this version

I Typically re-runs the bootloader configuration utility to take
the new kernel into account.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 107/496

Module installation

I make modules_install
I Does the installation for the host system by default, so needs

to be run as root

I Installs all modules in /lib/modules/<version>/
I kernel/

Module .ko (Kernel Object) files, in the same directory
structure as in the sources.

I modules.alias

Module aliases for module loading utilities. Example line:
alias sound-service-?-0 snd_mixer_oss

I modules.dep

Module dependencies
I modules.symbols

Tells which module a given symbol belongs to.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 108/496

Kernel cleanup targets

I Clean-up generated files (to force
re-compilation):
make clean

I Remove all generated files. Needed when
switching from one architecture to another.
Caution: it also removes your .config file!
make mrproper

I Also remove editor backup and patch reject files
(mainly to generate patches):
make distclean

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 109/496

Kernel Source Code

Cross-compiling the kernel

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 110/496

Cross-compiling the kernel

When you compile a Linux kernel for another CPU architecture

I Much faster than compiling natively, when the target system
is much slower than your GNU/Linux workstation.

I Much easier as development tools for your GNU/Linux
workstation are much easier to find.

I To make the difference with a native compiler, cross-compiler
executables are prefixed by the name of the target system,
architecture and sometimes library. Examples:
mips-linux-gcc, the prefix is mips-linux-

arm-linux-gnueabi-gcc, the prefix is arm-linux-gnueabi-

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 111/496

Specifying cross-compilation (1)

The CPU architecture and cross-compiler prefix are defined through
the ARCH and CROSS_COMPILE variables in the toplevel Makefile.

I ARCH is the name of the architecture. It is defined by the
name of the subdirectory in arch/ in the kernel sources

I Example: arm if you want to compile a kernel for the arm

architecture.

I CROSS_COMPILE is the prefix of the cross compilation tools
I Example: arm-linux- if your compiler is arm-linux-gcc

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 112/496

Specifying cross-compilation (2)

Two solutions to define ARCH and CROSS_COMPILE:

I Pass ARCH and CROSS_COMPILE on the make command line:
make ARCH=arm CROSS_COMPILE=arm-linux- ...

Drawback: it is easy to forget to pass these variables when
you run any make command, causing your build and
configuration to be screwed up.

I Define ARCH and CROSS_COMPILE as environment variables:
export ARCH=arm

export CROSS_COMPILE=arm-linux-

Drawback: it only works inside the current shell or terminal.
You could put these settings in a file that you source every
time you start working on the project. If you only work on a
single architecture with always the same toolchain, you could
even put these settings in your ~/.bashrc file to make them
permanent and visible from any terminal.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 113/496

Predefined configuration files

I Default configuration files available, per board or per-CPU
family

I They are stored in arch/<arch>/configs/, and are just
minimal .config files

I This is the most common way of configuring a kernel for
embedded platforms

I Run make help to find if one is available for your platform

I To load a default configuration file, just run
make acme_defconfig

I This will overwrite your existing .config file!

I To create your own default configuration file
I make savedefconfig, to create a minimal configuration file
I mv defconfig arch/<arch>/configs/myown_defconfig

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 114/496

Configuring the kernel

I After loading a default configuration file, you can adjust the
configuration to your needs with the normal xconfig,
gconfig or menuconfig interfaces

I You can also start the configuration from scratch without
loading a default configuration file

I As the architecture is different from your host architecture
I Some options will be different from the native configuration

(processor and architecture specific options, specific drivers,
etc.)

I Many options will be identical (filesystems, network protocol,
architecture-independent drivers, etc.)

I Make sure you have the support for the right CPU, the right
board and the right device drivers.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 115/496

Building and installing the kernel

I Run make

I Copy the final kernel image to the target storage
I can be uImage, zImage, vmlinux, bzImage in

arch/<arch>/boot

I make install is rarely used in embedded development, as
the kernel image is a single file, easy to handle

I It is however possible to customize the make install behaviour
in arch/<arch>/boot/install.sh

I make modules_install is used even in embedded
development, as it installs many modules and description files

I make INSTALL_MOD_PATH=<dir>/ modules_install
I The INSTALL_MOD_PATH variable is needed to install the

modules in the target root filesystem instead of your host root
filesystem.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 116/496

Kernel command line

I In addition to the compile time configuration, the kernel
behaviour can be adjusted with no recompilation using the
kernel command line

I The kernel command line is a string that defines various
arguments to the kernel

I It is very important for system configuration
I root= for the root filesystem (covered later)
I console= for the destination of kernel messages
I and many more, documented in

Documentation/kernel-parameters.txt in the kernel
sources

I This kernel command line is either
I Passed by the bootloader. In U-Boot, the contents of the

bootargs environment variable is automatically passed to the
kernel

I Built into the kernel, using the CONFIG_CMDLINE option.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 117/496

http://free-electrons.com/kerneldoc/latest/kernel-parameters.txt

Practical lab - Module Development Environment

I Set up a cross-compiling
environment

I Cross-compile a kernel for an ARM
target platform

I Boot this kernel from a directory
on your workstation, accessed by
the board through NFS

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 118/496

Kernel Source Code

Using kernel modules

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 119/496

Advantages of modules

I Modules make it easy to develop drivers without rebooting:
load, test, unload, rebuild, load...

I Useful to keep the kernel image size to the minimum
(essential in GNU/Linux distributions for PCs).

I Also useful to reduce boot time: you don’t spend time
initializing devices and kernel features that you only need later.

I Caution: once loaded, have full control and privileges in the
system. No particular protection. That’s why only the root

user can load and unload modules.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 120/496

Module dependencies

I Some kernel modules can depend on other modules, which
need to be loaded first.

I Example: the usb-storage module depends on the
scsi_mod, libusual and usbcore modules.

I Dependencies are described in
/lib/modules/<kernel-version>/modules.dep

This file is generated when you run make modules_install.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 121/496

Kernel log

When a new module is loaded, related information is available in
the kernel log.

I The kernel keeps its messages in a circular buffer (so that it
doesn’t consume more memory with many messages)

I Kernel log messages are available through the dmesg

command (diagnostic message)

I Kernel log messages are also displayed in the system console
(console messages can be filtered by level using the loglevel

kernel parameter, or completely disabled with the quiet

parameter).

I Note that you can write to the kernel log from userspace too:
echo "Debug info" > /dev/kmsg

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 122/496

Module utilities (1)

I modinfo <module_name>

modinfo <module_path>.ko

Gets information about a module: parameters, license,
description and dependencies.
Very useful before deciding to load a module or not.

I sudo insmod <module_path>.ko

Tries to load the given module. The full path to the module
object file must be given.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 123/496

Understanding module loading issues

I When loading a module fails, insmod often doesn’t give you
enough details!

I Details are often available in the kernel log.

I Example:

$ sudo insmod ./intr_monitor.ko

insmod: error inserting ’./intr_monitor.ko’: -1 Device or resource busy

$ dmesg

[17549774.552000] Failed to register handler for irq channel 2

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 124/496

Module utilities (2)

I sudo modprobe <module_name>

Most common usage of modprobe: tries to load all the
modules the given module depends on, and then this module.
Lots of other options are available. modprobe automatically
looks in /lib/modules/<version>/ for the object file
corresponding to the given module name.

I lsmod

Displays the list of loaded modules
Compare its output with the contents of /proc/modules!

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 125/496

Module utilities (3)

I sudo rmmod <module_name>

Tries to remove the given module.
Will only be allowed if the module is no longer in use (for
example, no more processes opening a device file)

I sudo modprobe -r <module_name>

Tries to remove the given module and all dependent modules
(which are no longer needed after removing the module)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 126/496

Passing parameters to modules

I Find available parameters:
modinfo snd-intel8x0m

I Through insmod:
sudo insmod ./snd-intel8x0m.ko index=-2

I Through modprobe:
Set parameters in /etc/modprobe.conf or in any file in
/etc/modprobe.d/:
options snd-intel8x0m index=-2

I Through the kernel command line, when the driver is built
statically into the kernel:
snd-intel8x0m.index=-2

I snd-intel8x0m is the driver name
I index is the driver parameter name
I -2 is the driver parameter value

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 127/496

Useful reading

Linux Kernel in a Nutshell, Dec 2006

I By Greg Kroah-Hartman, O’Reilly
http://www.kroah.com/lkn/

I A good reference book and guide on
configuring, compiling and managing the
Linux kernel sources.

I Freely available on-line!
Great companion to the printed book for
easy electronic searches!
Available as single PDF file on
http://free-electrons.com/

community/kernel/lkn/

I Our rating: 2 stars

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 128/496

http://www.kroah.com/lkn/
http://free-electrons.com/community/kernel/lkn/
http://free-electrons.com/community/kernel/lkn/

Embedded Linux driver development

Embedded Linux
driver development
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 129/496

Embedded Linux driver development

Loadable Kernel Modules

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 130/496

Hello Module 1/2

/* hello.c */

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

static int __init hello_init(void)

{

pr_alert("Good morrow");

pr_alert("to this fair assembly.\n");

return 0;

}

static void __exit hello_exit(void)

{

pr_alert("Alas, poor world, what treasure");

pr_alert("hast thou lost!\n");

}

module_init(hello_init);

module_exit(hello_exit);

MODULE_LICENSE("GPL");

MODULE_DESCRIPTION("Greeting module");

MODULE_AUTHOR("William Shakespeare");

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 131/496

Hello Module 2/2

I __init
I removed after initialization (static kernel or module.)

I __exit
I discarded when module compiled statically into the kernel.

I Example available on
http://free-electrons.com/doc/c/hello.c

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 132/496

http://free-electrons.com/doc/c/hello.c

Hello Module Explanations

I Headers specific to the Linux kernel: linux/xxx.h
I No access to the usual C library, we’re doing kernel

programming

I An initialization function
I Called when the module is loaded, returns an error code (0 on

success, negative value on failure)
I Declared by the module_init() macro: the name of the

function doesn’t matter, even though <modulename>_init()

is a convention.

I A cleanup function
I Called when the module is unloaded
I Declared by the module_exit() macro.

I Metadata information declared using MODULE_LICENSE(),
MODULE_DESCRIPTION() and MODULE_AUTHOR()

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 133/496

Symbols Exported to Modules 1/2

I From a kernel module, only a limited number of kernel
functions can be called

I Functions and variables have to be explicitly exported by the
kernel to be visible from a kernel module

I Two macros are used in the kernel to export functions and
variables:

I EXPORT_SYMBOL(symbolname), which exports a function or
variable to all modules

I EXPORT_SYMBOL_GPL(symbolname), which exports a function
or variable only to GPL modules

I A normal driver should not need any non-exported function.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 134/496

Symbols exported to modules 2/2

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 135/496

Module License

I Several usages
I Used to restrict the kernel functions that the module can use if

it isn’t a GPL licensed module
I Difference between EXPORT_SYMBOL() and

EXPORT_SYMBOL_GPL()

I Used by kernel developers to identify issues coming from
proprietary drivers, which they can’t do anything about
(“Tainted” kernel notice in kernel crashes and oopses).

I Useful for users to check that their system is 100% free (check
/proc/sys/kernel/tainted)

I Values
I GPL compatible (see include/linux/license.h: GPL,

GPL v2, GPL and additional rights, Dual MIT/GPL,
Dual BSD/GPL, Dual MPL/GPL

I Proprietary

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 136/496

Compiling a Module

I Two solutions
I Out of tree

I When the code is outside of the kernel source tree, in a
different directory

I Advantage: Might be easier to handle than modifications to
the kernel itself

I Drawbacks: Not integrated to the kernel
configuration/compilation process, needs to be built
separately, the driver cannot be built statically

I Inside the kernel tree
I Well integrated into the kernel configuration/compilation

process
I Driver can be built statically if needed

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 137/496

Compiling an out-of-tree Module 1/2

I The below Makefile should be reusable for any single-file
out-of-tree Linux module

I The source file is hello.c

I Just run make to build the hello.ko file

ifneq ($(KERNELRELEASE),)

obj-m := hello.o

else

KDIR := /path/to/kernel/sources

all:

<tab>$(MAKE) -C $(KDIR) M=‘pwd‘ modules

endif

I For KDIR, you can either set
I full kernel source directory (configured and compiled)
I or just kernel headers directory (minimum needed)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 138/496

Compiling an out-of-tree Module 2/2

I The module Makefile is interpreted with KERNELRELEASE

undefined, so it calls the kernel Makefile, passing the module
directory in the M variable

I the kernel Makefile knows how to compile a module, and
thanks to the M variable, knows where the Makefile for our
module is. The module Makefile is interpreted with
KERNELRELEASE defined, so the kernel sees the obj-m

definition.
Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 139/496

Modules and Kernel Version

I To be compiled, a kernel module needs access to the kernel
headers, containing the definitions of functions, types and
constants.

I Two solutions
I Full kernel sources
I Only kernel headers (linux-headers-* packages in

Debian/Ubuntu distributions)

I The sources or headers must be configured
I Many macros or functions depend on the configuration

I A kernel module compiled against version X of kernel headers
will not load in kernel version Y

I modprobe / insmod will say Invalid module format

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 140/496

New Driver in Kernel Sources 1/2

I To add a new driver to the kernel sources:
I Add your new source file to the appropriate source directory.

Example: drivers/usb/serial/navman.c
I Single file drivers in the common case, even if the file is several

thousand lines of code big. Only really big drivers are split in
several files or have their own directory.

I Describe the configuration interface for your new driver by
adding the following lines to the Kconfig file in this directory:

config USB_SERIAL_NAVMAN

tristate "USB Navman GPS device"

depends on USB_SERIAL

help

To compile this driver as a module, choose M

here: the module will be called navman.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 141/496

New Driver in Kernel Sources 2/2

I Add a line in the Makefile file based on the Kconfig setting:
obj-$(CONFIG_USB_SERIAL_NAVMAN) += navman.o

I It tells the kernel build system to build navman.c when the
USB_SERIAL_NAVMAN option is enabled. It works both if
compiled statically or as a module.

I Run make xconfig and see your new options!
I Run make and your new files are compiled!
I See Documentation/kbuild/ for details and more elaborate

examples like drivers with several source files, or drivers in their
own subdirectory, etc.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 142/496

http://free-electrons.com/kerneldoc/latest/kbuild/

How To Create Linux Patches

I The old school way
I Before making your changes, make sure you have two kernel

trees: cp -a linux-3.5.5/ linux-3.5.5-patch/
I Make your changes in linux-3.5.5-patch/
I Run make distclean to keep only source files.
I Create a patch file: diff -Nur linux-3.5.5/ linux-

3.5.5-patch/ > patchfile
I Not convenient, does not scale to multiple patches

I The new school ways
I Use quilt (tool to manage a stack of patches)
I Use git (revision control system used by the Linux kernel

developers)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 143/496

Hello Module with Parameters 1/2

/* hello_param.c */

#include <linux/init.h>

#include <linux/module.h>

#include <linux/moduleparam.h>

MODULE_LICENSE("GPL");

/* A couple of parameters that can be passed in: how many

times we say hello, and to whom */

static char *whom = "world";

module_param(whom, charp, 0);

static int howmany = 1;

module_param(howmany, int, 0);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 144/496

Hello Module with Parameters 2/2

static int __init hello_init(void)

{

int i;

for (i = 0; i < howmany; i++)

pr_alert("(%d) Hello, %s\n", i, whom);

return 0;

}

static void __exit hello_exit(void)

{

pr_alert("Goodbye, cruel %s\n", whom);

}

module_init(hello_init);

module_exit(hello_exit);

Thanks to Jonathan Corbet for the example!
Example available on
http://free-electrons.com/doc/c/hello_param.c

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 145/496

http://free-electrons.com/doc/c/hello_param.c

Declaring a module parameter

#include <linux/moduleparam.h>

module_param(

name, /* name of an already defined variable */

type, /* either byte, short, ushort, int, uint, long, ulong,

charp, or bool.(checked at compile time!) */

perm /* for /sys/module/<module_name>/parameters/<param>,

0: no such module parameter value file */

);

/* Example */

int irq=5;

module_param(irq, int, S_IRUGO);

Modules parameter arrays are also possible with
module_param_array(), but they are less common.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 146/496

Practical lab - Writing Modules

I Create, compile and load your first
module

I Add module parameters

I Access kernel internals from your
module

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 147/496

Embedded Linux driver development

Memory Management

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 148/496

Physical and Virtual Memory

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 149/496

Virtual Memory Organization

I 1GB reserved for kernel-space
I Contains kernel code and core data

structures, identical in all address spaces
I Most memory can be a direct mapping

of physical memory at a fixed offset

I Complete 3GB exclusive mapping
available for each user-space process

I Process code and data (program, stack,
...)

I Memory-mapped files
I Not necessarily mapped to physical

memory (demand fault paging used for
dynamic mapping to physical memory
pages)

I Differs from one address space to
another

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 150/496

Physical / virtual memory mapping

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 151/496

Accessing more physical memory

I Only less than 1GB memory addressable directly through
kernel virtual address space

I If more physical memory is present on the platform, part of
the memory will not be accessible by kernel space, but can be
used by user-space

I To allow the kernel to access more physical memory:
I Change 1GB/3GB memory split (2GB/2GB)

(CONFIG_VMSPLIT_3G) ⇒ reduces total memory available for
each process

I Change for a 64 bit architecture ;-) See
Documentation/x86/x86_64/mm.txt for an example.

I Activate highmem support if available for your architecture:
I Allows kernel to map parts of its non-directly accessible

memory
I Mapping must be requested explicitly
I Limited addresses ranges reserved for this usage

I See http://lwn.net/Articles/75174/ for useful
explanations

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 152/496

http://free-electrons.com/kerneldoc/latest/x86/x86_64/mm.txt
http://lwn.net/Articles/75174/

Accessing even more physical memory!

I If your 32 bit platform hosts more than 4GB, they just cannot
be mapped

I PAE (Physical Address Expansion) may be supported by your
architecture

I Adds some address extension bits used to index memory areas

I Allows accessing up to 64 GB of physical memory through
bigger pages (2 MB pages on x86 with PAE)

I Note that each user-space process is still limited to a 3 GB
memory space

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 153/496

Notes on user-space memory

I New user-space memory is allocated either from the already
allocated process memory, or using the mmap system call

I Note that memory allocated may not be physically allocated:
I Kernel uses demand fault paging to allocate the physical page

(the physical page is allocated when access to the virtual
address generates a page fault)

I ... or may have been swapped out, which also induces a page
fault

I User space memory allocation is allowed to over-commit
memory (more than available physical memory) ⇒ can lead to
out of memory

I OOM killer kicks in and selects a process to kill to retrieve
some memory. That’s better than letting the system freeze.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 154/496

Back to kernel memory

I Kernel memory allocators (see following slides) allocate
physical pages, and kernel allocated memory cannot be
swapped out, so no fault handling required for kernel memory.

I Most kernel memory allocation functions also return a kernel
virtual address to be used within the kernel space.

I Kernel memory low-level allocator manages pages. This is the
finest granularity (usually 4 KB, architecture dependent).

I However, the kernel memory management handles smaller
memory allocations through its allocator (see SLAB allocators
– used by kmalloc).

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 155/496

Allocators in the Kernel

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 156/496

Page Allocator

I Appropriate for medium-size allocations

I A page is usually 4K, but can be made greater in some
architectures (sh, mips: 4, 8, 16 or 64 KB, but not
configurable in x86 or arm).

I Buddy allocator strategy, so only allocations of power of two
number of pages are possible: 1 page, 2 pages, 4 pages, 8
pages, 16 pages, etc.

I Typical maximum size is 8192 KB, but it might depend on the
kernel configuration.

I The allocated area is virtually contiguous (of course), but also
physically contiguous. It is allocated in the identity-mapped
part of the kernel memory space.

I This means that large areas may not be available or hard to
retrieve due to physical memory fragmentation.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 157/496

Page Allocator API: Get free pages

I unsigned long get_zeroed_page(int flags)

I Returns the virtual address of a free page, initialized to zero

I unsigned long __get_free_page(int flags)

I Same, but doesn’t initialize the contents

I unsigned long __get_free_pages(int flags,

unsigned int order)

I Returns the starting virtual address of an area of several
contiguous pages in physical RAM, with order being
log2(number_of_pages).Can be computed from the size
with the get_order() function.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 158/496

Page Allocator API: Free Pages

I void free_page(unsigned long addr)

I Frees one page.

I void free_pages(unsigned long addr,

unsigned int order)

I Frees multiple pages. Need to use the same order as in
allocation.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 159/496

Page Allocator Flags

I The most common ones are:
I GFP_KERNEL

I Standard kernel memory allocation. The allocation may block
in order to find enough available memory. Fine for most
needs, except in interrupt handler context.

I GFP_ATOMIC
I RAM allocated from code which is not allowed to block

(interrupt handlers or critical sections). Never blocks, allows
to access emergency pools, but can fail if no free memory is
readily available.

I GFP_DMA
I Allocates memory in an area of the physical memory usable

for DMA transfers.

I Others are defined in include/linux/gfp.h

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 160/496

SLAB Allocator 1/2

I The SLAB allocator allows to create caches, which contains a
set of objects of the same size

I The object size can be smaller or greater than the page size

I The SLAB allocator takes care of growing or reducing the size
of the cache as needed, depending on the number of allocated
objects. It uses the page allocator to allocate and free pages.

I SLAB caches are used for data structures that are present in
many many instances in the kernel: directory entries, file
objects, network packet descriptors, process descriptors, etc.

I See /proc/slabinfo

I They are rarely used for individual drivers.

I See include/linux/slab.h for the API

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 161/496

SLAB Allocator 2/2

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 162/496

Different SLAB Allocators

I There are three different, but API compatible,
implementations of a SLAB allocator in the Linux kernel. A
particular implementation is chosen at configuration time.

I SLAB: original, well proven allocator in Linux 2.6.
I SLOB: much simpler. More space efficient but doesn’t scale

well. Saves a few hundreds of KB in small systems (depends
on CONFIG_EXPERT)

I SLUB: the new default allocator since 2.6.23, simpler than
SLAB, scaling much better (in particular for huge systems)
and creating less fragmentation.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 163/496

kmalloc Allocator

I The kmalloc allocator is the general purpose memory allocator
in the Linux kernel

I For small sizes, it relies on generic SLAB caches, named
kmalloc-XXX in /proc/slabinfo

I For larger sizes, it relies on the page allocator
I The allocated area is guaranteed to be physically contiguous
I The allocated area size is rounded up to the next power of

two size (while using the SLAB allocator directly allows to
have more flexibility)

I It uses the same flags as the page allocator (GFP_KERNEL,
GFP_ATOMIC, GFP_DMA, etc.) with the same semantics.

I Maximum sizes, on x86 and arm (see http://j.mp/YIGq6W):

I Per allocation: 4 MB
I Total allocations: 128 MB

I Should be used as the primary allocator unless there is a
strong reason to use another one.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 164/496

http://j.mp/YIGq6W

kmalloc API 1/2

I #include <linux/slab.h>

I void *kmalloc(size_t size, int flags);

I Allocate size bytes, and return a pointer to the area (virtual
address)

I size: number of bytes to allocate
I flags: same flags as the page allocator

I void kfree (const void *objp);

I Free an allocated area

I Example: (drivers/infiniband/core/cache.c)

struct ib_update_work *work;

work = kmalloc(sizeof *work, GFP_ATOMIC);

...

kfree(work);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 165/496

kmalloc API 2/2

I void *kzalloc(size_t size, gfp_t flags);

I Allocates a zero-initialized buffer

I void *kcalloc(size_t n, size_t size, gfp_t flags);

I Allocates memory for an array of n elements of size size, and
zeroes its contents.

I void *krealloc(const void *p, size_t new_size,

gfp_t flags);

I Changes the size of the buffer pointed by p to new_size, by
reallocating a new buffer and copying the data, unless
new_size fits within the alignment of the existing buffer.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 166/496

vmalloc Allocator

I The vmalloc allocator can be used to obtain virtually
contiguous memory zones, but not physically contiguous. The
requested memory size is rounded up to the next page.

I The allocated area is in the kernel space part of the address
space, but outside of the identically-mapped area

I Allocations of fairly large areas is possible (almost as big as
total available memory, see http://j.mp/YIGq6W again),
since physical memory fragmentation is not an issue, but areas
cannot be used for DMA, as DMA usually requires physically
contiguous buffers.

I API in include/linux/vmalloc.h
I void *vmalloc(unsigned long size);

I Returns a virtual address

I void vfree(void *addr);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 167/496

http://j.mp/YIGq6W

Kernel memory debugging

I Debugging features available since 2.6.31
I Kmemcheck

I Dynamic checker for access to uninitialized memory.
I Only available on x86 so far (Linux 3.6 status), but will help

to improve architecture independent code anyway.
I See Documentation/kmemcheck.txt for details.

I Kmemleak
I Dynamic checker for memory leaks
I This feature is available for all architectures.
I See Documentation/kmemleak.txt for details.

I Both have a significant overhead. Only use them in
development!

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 168/496

http://free-electrons.com/kerneldoc/latest/kmemcheck.txt
http://free-electrons.com/kerneldoc/latest/kmemleak.txt

Embedded Linux driver development

Useful general-purpose kernel APIs

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 169/496

Memory/string utilities

I In linux/string.h
I Memory-related: memset, memcpy, memmove, memscan,

memcmp, memchr
I String-related: strcpy, strcat, strcmp, strchr, strrchr,

strlen and variants
I Allocate and copy a string: kstrdup, kstrndup
I Allocate and copy a memory area: kmemdup

I In linux/kernel.h
I String to int conversion: simple_strtoul, simple_strtol,

simple_strtoull, simple_strtoll
I Other string functions: sprintf, sscanf

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 170/496

Linked lists

I Convenient linked-list facility in linux/list.h
I Used in thousands of places in the kernel

I Add a struct list_head member to the structure whose
instances will be part of the linked list. It is usually named
node when each instance needs to only be part of a single list.

I Define the list with the LIST_HEAD macro for a global list, or
define a struct list_head element and initialize it with
INIT_LIST_HEAD for lists embedded in a structure.

I Then use the list_*() API to manipulate the list
I Add elements: list_add(), list_add_tail()
I Remove, move or replace elements: list_del(),

list_move(), list_move_tail(), list_replace()
I Test the list: list_empty()
I Iterate over the list: list_for_each_*() family of macros

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 171/496

Linked Lists Examples (1)

I From include/linux/atmel_tc.h

/*

* Definition of a list element, with a

* struct list_head member

*/

struct atmel_tc

{

/* some members */

struct list_head node;

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 172/496

Linked Lists Examples (2)

I From drivers/misc/atmel_tclib.c

/* Define the global list */

static LIST_HEAD(tc_list);

static int __init tc_probe(struct platform_device *pdev) {

struct atmel_tc *tc;

tc = kzalloc(sizeof(struct atmel_tc), GFP_KERNEL);

/* Add an element to the list */

list_add_tail(&tc->node, &tc_list);

}

struct atmel_tc *atmel_tc_alloc(unsigned block, const char *name)

{

struct atmel_tc *tc;

/* Iterate over the list elements */

list_for_each_entry(tc, &tc_list, node) {

/* Do something with tc */

}

[...]

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 173/496

Embedded Linux driver development

I/O Memory and Ports

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 174/496

Port I/O vs. Memory-Mapped I/O

I MMIO
I Same address bus to address memory and I/O devices
I Access to the I/O devices using regular instructions
I Most widely used I/O method across the different architectures

supported by Linux

I PIO
I Different address spaces for memory and I/O devices
I Uses a special class of CPU instructions to access I/O devices
I Example on x86: IN and OUT instructions

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 175/496

MMIO vs PIO

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 176/496

Requesting I/O ports

I Tells the kernel which driver is using which I/O ports

I Allows to prevent other drivers from using the same I/O ports,
but is purely voluntary.

I struct resource *request_region(

unsigned long start,

unsigned long len,

char *name);

I Tries to reserve the given region and returns NULL if
unsuccessful.

I request_region(0x0170, 8, "ide1");

I void release_region(

unsigned long start,

unsigned long len);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 177/496

/proc/ioports example (x86)

0000-001f : dma1

0020-0021 : pic1

0040-0043 : timer0

0050-0053 : timer1

0070-0077 : rtc

0080-008f : dma page reg

00a0-00a1 : pic2

00c0-00df : dma2

00f0-00ff : fpu

0170-0177 : ide1

01f0-01f7 : ide0

0376-0376 : ide1

03f6-03f6 : ide0

03f8-03ff : serial

0800-087f : 0000:00:1f.0

...

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 178/496

Accessing I/O ports

I Functions to read/write bytes (b), word (w) and longs (l) to
I/O ports:

I unsigned in[bwl](unsigned port)

I void out[bwl](value, unsigned long port)

I And the strings variants: often more efficient than the
corresponding C loop, if the processor supports such
operations!

I void ins[bwl](unsigned port, void *addr,

unsigned long count)

I void outs[bwl](unsigned port, void *addr,

unsigned long count)

I Examples
I read 8 bits

I oldlcr = inb(baseio + UART_LCR)

I write 8 bits
I outb(MOXA_MUST_ENTER_ENCHANCE, baseio + UART_LCR)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 179/496

Requesting I/O memory

I Functions equivalent to request_region() and
release_region(), but for I/O memory.

I struct resource *request_mem_region(

unsigned long start,

unsigned long len,

char *name);

I void release_mem_region(

unsigned long start,

unsigned long len);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 180/496

/proc/iomem example

00000000-0009efff : System RAM

0009f000-0009ffff : reserved

000a0000-000bffff : Video RAM area

000c0000-000cffff : Video ROM

000f0000-000fffff : System ROM

00100000-3ffadfff : System RAM

00100000-0030afff : Kernel code

0030b000-003b4bff : Kernel data

3ffae000-3fffffff : reserved

40000000-400003ff : 0000:00:1f.1

40001000-40001fff : 0000:02:01.0

40400000-407fffff : PCI CardBus #03

40800000-40bfffff : PCI CardBus #03

a0000000-a0000fff : pcmcia_socket0

e8000000-efffffff : PCI Bus #01

...

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 181/496

Mapping I/O memory in virtual memory

I Load/store instructions work with virtual addresses

I To access I/O memory, drivers need to have a virtual address
that the processor can handle, because I/O memory is not
mapped by default in virtual memory.

I The ioremap function satisfies this need:

#include <asm/io.h>

void *ioremap(unsigned long phys_addr,

unsigned long size);

void iounmap(void *address);

I Caution: check that ioremap doesn’t return a NULL address!

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 182/496

ioremap()

ioremap(0xFFEBC00, 4096) = 0xCDEFA000

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 183/496

Accessing MMIO devices

I Directly reading from or writing to addresses returned by
ioremap (pointer dereferencing) may not work on some
architectures.

I To do PCI-style, little-endian accesses, conversion being done
automatically

unsigned read[bwl](void *addr);

void write[bwl](unsigned val, void *addr);

I To do raw access, without endianness conversion

unsigned __raw_read[bwl](void *addr);

void __raw_write[bwl](unsigned val, void *addr);

I Example
I 32 bits write

__raw_writel(1 << KS8695_IRQ_UART_TX,

membase + KS8695_INTST);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 184/496

New API for mixed accesses

I A new API allows to write drivers that can work on either
devices accessed over PIO or MMIO. A few drivers use it, but
there doesn’t seem to be a consensus in the kernel community
around it.

I Mapping
I For PIO: ioport_map() and ioport_unmap(). They don’t

really map, but they return a special iomem cookie.
I For MMIO: ioremap() and iounmap(). As usual.

I Access, works both on addresses or cookies returned by
ioport_map() and ioremap()

I ioread[8/16/32]() and iowrite[8/16/32] for single access
I ioread[8/16/32]_rep() and iowrite[8/16/32]_rep() for

repeated accesses

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 185/496

Avoiding I/O access issues

I Caching on I/O ports or memory already disabled

I Use the macros, they do the right thing for your architecture
I The compiler and/or CPU can reorder memory accesses,

which might cause troubles for your devices is they expect one
register to be read/written before another one.

I Memory barriers are available to prevent this reordering
I rmb() is a read memory barrier, prevents reads to cross the

barrier
I wmb() is a write memory barrier
I mb() is a read-write memory barrier

I Starts to be a problem with CPUs that reorder instructions
and SMP.

I See Documentation/memory-barriers.txt for details

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 186/496

http://free-electrons.com/kerneldoc/latest/memory-barriers.txt

/dev/mem

I Used to provide user-space applications with direct access to
physical addresses.

I Usage: open /dev/mem and read or write at given offset.
What you read or write is the value at the corresponding
physical address.

I Used by applications such as the X server to write directly to
device memory.

I On x86, arm, tile, powerpc, unicore32, s390:
CONFIG_STRICT_DEVMEM option to restrict /dev/mem
non-RAM addresses, for security reasons (Linux 3.6 status).

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 187/496

Practical lab - I/O Memory and Ports

I Make a remote connection to your
board through ssh

I Access to the system console
through the network

I Reserve the I/O memory addresses
used by the serial port

I Read device registers and write
data to them, to send characters
on the serial port

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 188/496

Embedded Linux driver development

Device Files

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 189/496

Devices

I One of the kernel important role is to allow applications to
access hardware devices

I In the Linux kernel, most devices are presented to userspace
applications through two different abstractions

I Character device
I Block device

I Internally, the kernel identifies each device by a triplet of
information

I Type (character or block)
I Major (typically the category of device)
I Minor (typically the identifier of the device)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 190/496

Types of devices

I Block devices
I A device composed of fixed-sized blocks, that can be read and

written to store data
I Used for hard disks, USB keys, SD cards, etc.

I Character devices
I Originally, an infinite stream of bytes, with no beginning, no

end, no size. The pure example: a serial port.
I Used for serial ports, terminals, but also sound cards, video

acquisition devices, frame buffers
I Most of the devices that are not block devices are represented

as character devices by the Linux kernel

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 191/496

Devices: everything is a file

I A very important Unix design decision was to represent most
of the “system objects” as files

I It allows applications to manipulate all “system objects” with
the normal file API (open, read, write, close, etc.)

I So, devices had to be represented as files to the applications

I This is done through a special artifact called a device file

I It is a special type of file, that associates a file name visible to
userspace applications to the triplet (type, major, minor) that
the kernel understands

I All device files are by convention stored in the /dev directory

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 192/496

Device files examples

Example of device files in a Linux system

$ ls -l /dev/ttyS0 /dev/tty1 /dev/sda1 /dev/sda2 /dev/zero

brw-rw---- 1 root disk 8, 1 2011-05-27 08:56 /dev/sda1

brw-rw---- 1 root disk 8, 2 2011-05-27 08:56 /dev/sda2

crw------- 1 root root 4, 1 2011-05-27 08:57 /dev/tty1

crw-rw---- 1 root dialout 4, 64 2011-05-27 08:56 /dev/ttyS0

crw-rw-rw- 1 root root 1, 5 2011-05-27 08:56 /dev/zero

Example C code that uses the usual file API to write data to a
serial port

int fd;

fd = open("/dev/ttyS0", O_RDWR);

write(fd, "Hello", 5);

close(fd);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 193/496

Creating device files

I On a basic Linux system, the device files have to be created
manually using the mknod command

I mknod /dev/<device> [c|b] major minor
I Needs root privileges
I Coherency between device files and devices handled by the

kernel is left to the system developer

I On more elaborate Linux systems, mechanisms can be added
to create/remove them automatically when devices appear
and disappear

I devtmpfs virtual filesystem, since kernel 2.6.32
I udev daemon, solution used by desktop and server Linux

systems
I mdev program, a lighter solution than udev

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 194/496

Embedded Linux driver development

Character drivers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 195/496

Usefulness of character drivers

I Except for storage device drivers, most drivers for devices with
input and output flows are implemented as character drivers.

I So, most drivers you will face will be character drivers.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 196/496

Creating a Character Driver 1/2

I User-space needs
I The name of a device file in /dev to interact with the device

driver through regular file operations (open, read, write,
close...)

I The kernel needs
I To know which driver is in charge of device files with a given

major / minor number pair
I For a given driver, to have handlers (file operations) to execute

when user-space opens, reads, writes or closes the device file.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 197/496

Creating a Character Driver 2/2

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 198/496

Implementing a character driver

I Four major steps
I Implement operations corresponding to the system calls an

application can apply to a file: file operations
I Define a file_operations structure associating function

pointers to their implementation in your driver
I Reserve a set of major and minors for your driver
I Tell the kernel to associate the reserved major and minor to

your file operations

I This is a very common design scheme in the Linux kernel
I A common kernel infrastructure defines a set of operations to

be implemented by a driver and functions to register your
driver

I Your driver only needs to implement this set of well-defined
operations

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 199/496

File operations 1/3

I Before registering character devices, you have to define
file_operations (called fops) for the device files.

I The file_operations structure is generic to all files handled
by the Linux kernel. It contains many operations that aren’t
needed for character drivers.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 200/496

File operations 2/3

I Here are the most important operations for a character driver.
All of them are optional.

struct file_operations {

ssize_t (*read) (struct file *, char __user *,

size_t, loff_t *);

ssize_t (*write) (struct file *, const char __user *,

size_t, loff_t *);

long (*unlocked_ioctl) (struct file *, unsigned int,

unsigned long);

int (*mmap) (struct file *, struct vm_area_struct *);

int (*open) (struct inode *, struct file *);

int (*release) (struct inode *, struct file *);

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 201/496

open() and release()

I int foo_open(struct inode *i, struct file *f)

I Called when user-space opens the device file.
I inode is a structure that uniquely represent a file in the

system (be it a regular file, a directory, a symbolic link, a
character or block device)

I file is a structure created every time a file is opened. Several
file structures can point to the same inode structure.

I Contains information like the current position, the opening
mode, etc.

I Has a void *private_data pointer that one can freely use.
I A pointer to the file structure is passed to all other operations

I int foo_release(struct inode *i, struct file *f)

I Called when user-space closes the file.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 202/496

read()

I ssize_t foo_read(struct file *f, __user char *buf,

size_t sz, loff_t *off)

I Called when user-space uses the read() system call on the
device.

I Must read data from the device, write at most sz bytes in the
user-space buffer buf, and update the current position in the
file off. f is a pointer to the same file structure that was
passed in the open() operation

I Must return the number of bytes read.
I On UNIX, read() operations typically block when there isn’t

enough data to read from the device

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 203/496

write()

I ssize_t foo_write(struct file *f,

__user const char *buf, size_t sz, loff_t *off)

I Called when user-space uses the write() system call on the
device

I The opposite of read, must read at most sz bytes from buf,
write it to the device, update off and return the number of
bytes written.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 204/496

Exchanging data with user-space 1/3

I Kernel code isn’t allowed to directly access user-space
memory, using memcpy or direct pointer dereferencing

I Doing so does not work on some architectures
I If the address passed by the application was invalid, the

application would segfault.

I To keep the kernel code portable and have proper error
handling, your driver must use special kernel functions to
exchange data with user-space.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 205/496

Exchanging data with user-space 2/3

I A single value
I get_user(v, p);

I The kernel variable v gets the value pointed by the user-space
pointer p

I put_user(v, p);
I The value pointed by the user-space pointer p is set to the

contents of the kernel variable v.

I A buffer
I unsigned long copy_to_user(void __user *to,

const void *from, unsigned long n);

I unsigned long copy_from_user(void *to,

const void __user *from, unsigned long n);

I The return value must be checked. Zero on success, non-zero
on failure. If non-zero, the convention is to return -EFAULT.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 206/496

Exchanging data with user-space 3/3

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 207/496

Zero copy access to user memory

I Having to copy data to our from an intermediate kernel buffer
is expensive.

I Zero copy options are possible:
I mmap() system call to allow user space to directly access

memory mapped I/O space (covered in the mmap() section).
I get_user_pages() to get a mapping to user pages without

having to copy them. See http://j.mp/oPW6Fb (Kernel API
doc). This API is more complex to use though.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 208/496

http://j.mp/oPW6Fb

Read Operation Example

static ssize_t

acme_read(struct file *file, char __user * buf, size_t count, loff_t * ppos)

{

/* The acme_buf address corresponds to a device I/O memory area */

/* of size acme_bufsize, obtained with ioremap() */

int remaining_size, transfer_size;

remaining_size = acme_bufsize - (int)(*ppos);

/* bytes left to transfer */

if (remaining_size == 0) {

/* All read, returning 0 (End Of File) */

return 0;

}

/* Size of this transfer */

transfer_size = min_t(int, remaining_size, count);

if (copy_to_user

(buf /* to */ , acme_buf + *ppos /* from */ , transfer_size)) {

return -EFAULT;

} else { /* Increase the position in the open file */

*ppos += transfer_size;

return transfer_size;

}

}

Piece of code available at
http://free-electrons.com/doc/c/acme.c

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 209/496

http://free-electrons.com/doc/c/acme.c

Write Operation Example

static ssize_t

acme_write(struct file *file, const char __user *buf, size_t count,

loff_t *ppos)

{

int remaining_bytes;

/* Number of bytes not written yet in the device */

remaining_bytes = acme_bufsize - (*ppos);

if (count > remaining_bytes) {

/* Can’t write beyond the end of the device */

return -EIO;

}

if (copy_from_user(acme_buf + *ppos /*to*/ , buf /*from*/ , count)) {

return -EFAULT;

} else {

/* Increase the position in the open file */

*ppos += count;

return count;

}

}

Piece of code available at
http://free-electrons.com/doc/c/acme.c

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 210/496

http://free-electrons.com/doc/c/acme.c

unlocked ioctl()

I long unlocked_ioctl(struct file *f,

unsigned int cmd, unsigned long arg)

I Associated to the ioctl() system call.
I Called unlocked because it didn’t hold the Big Kernel Lock

(gone now).
I Allows to extend the driver capabilities beyond the limited

read/write API.
I For example: changing the speed of a serial port, setting video

output format, querying a device serial number...
I cmd is a number identifying the operation to perform
I arg is the optional argument passed as third argument of the

ioctl() system call. Can be an integer, an address, etc.
I The semantic of cmd and arg is driver-specific.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 211/496

ioctl() example: kernel side

static long phantom_ioctl(struct file *file, unsigned int cmd,

unsigned long arg)

{

struct phm_reg r;

void __user *argp = (void __user *)arg;

switch (cmd) {

case PHN_SET_REG:

if (copy_from_user(&r, argp, sizeof(r)))

return -EFAULT;

/* Do something */

break;

case PHN_GET_REG:

if (copy_to_user(argp, &r, sizeof(r)))

return -EFAULT;

/* Do something */

break;

default:

return -ENOTTY;

}

return 0; }

Selected excerpt from drivers/misc/phantom.c

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 212/496

Ioctl() Example: Application Side

int main(void)

{

int fd, ret;

struct phm_reg reg;

fd = open("/dev/phantom");

assert(fd > 0);

reg.field1 = 42;

reg.field2 = 67;

ret = ioctl(fd, PHN_SET_REG, & reg);

assert(ret == 0);

return 0;

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 213/496

File Operations Definition: Example 3/3

I Defining a file_operations structure:

#include <linux/fs.h>

static struct file_operations acme_fops =

{

.owner = THIS_MODULE,

.read = acme_read,

.write = acme_write,

};

I You just need to supply the functions you implemented!
Defaults for other functions (such as open, release...) are
fine if you do not implement anything special.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 214/496

dev t data type

I Kernel data type to represent a major / minor number pair
I Also called a device number.
I Defined in linux/kdev_t.h
I 32 bit size (major: 12 bits, minor: 20 bits)
I Macro to compose the device number

I MKDEV(int major, int minor);

I Macro to extract the minor and major numbers:
I MAJOR(dev_t dev);
I MINOR(dev_t dev);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 215/496

Registering device numbers 1/2

#include <linux/fs.h>

int register_chrdev_region(

dev_t from, /* Starting device number */

unsigned count, /* Number of device numbers */

const char *name); /* Registered name */

Returns 0 if the allocation was successful.
Example

static dev_t acme_dev = MKDEV(202, 128);

if (register_chrdev_region(acme_dev, acme_count, "acme")) {

pr_err("Failed to allocate device number\n");

...

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 216/496

Registering device numbers 2/2

I If you don’t have fixed device numbers assigned to your driver
I Better not to choose arbitrary ones. There could be conflicts

with other drivers.
I The kernel API offers an alloc_chrdev_region function to

have the kernel allocate free ones for you. You can find the
allocated major number in /proc/devices.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 217/496

Information on registered devices: /proc/devices

Character devices:

1 mem

4 tty

4 ttyS

5 /dev/tty

5 /dev/console

...

Block devices:

1 ramdisk

7 loop

8 sd

9 md

11 sr

179 mmc

254 mdp

...
Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 218/496

Character device registration 1/2

I The kernel represents character drivers with a cdev structure

I Declare this structure globally (within your module):

#include <linux/cdev.h>

static struct cdev acme_cdev;

I In the init function, initialize the structure:

cdev_init(&acme_cdev, &acme_fops);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 219/496

Character device registration 2/2

I Then, now that your structure is ready, add it to the system:

int cdev_add(

struct cdev *p, /* Character device structure */

dev_t dev, /* Starting device major/minor */

unsigned count); /* Number of devices */

I After this function call, the kernel knows the association
between the major/minor numbers and the file operations.
Your device is ready to be used!

I Example (continued):

if (cdev_add(&acme_cdev, acme_dev, acme_count)) {

printk (KERN_ERR "Char driver registration failed\n");

...

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 220/496

Character device unregistration

I First delete your character device
I void cdev_del(struct cdev *p);

I Then, and only then, free the device number
I void unregister_chrdev_region(dev_t from,

unsigned count);

I Example (continued):

cdev_del(&acme_cdev);

unregister_chrdev_region(acme_dev, acme_count);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 221/496

Linux error codes

I The kernel convention for error management is
I Return 0 on success
I Return a negative error code on failure

I Error codes
I include/asm-generic/errno-base.h
I include/asm-generic/errno.h

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 222/496

Char driver example summary 1/4

static void *acme_buf;

static int acme_bufsize = 8192;

static int acme_count = 1;

static dev_t acme_dev = MKDEV(202, 128);

static struct cdev acme_cdev;

static ssize_t acme_read(...) {...}

static ssize_t acme_write(...) {...}

static const struct file_operations acme_fops = {

.owner = THIS_MODULE,

.read = acme_read,

.write = acme_write,

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 223/496

Char driver example summary 2/4

static int __init acme_init(void)

{

int err;

acme_buf = ioremap(ACME_PHYS, acme_bufsize);

if (!acme_buf) {

err = -ENOMEM;

goto err_exit;

}

if (register_chrdev_region(acme_dev, acme_count, "acme")) {

err = -ENODEV;

goto err_free_buf;

}

cdev_init(&acme_cdev, &acme_fops);

if (cdev_add(&acme_cdev, acme_dev, acme_count)) {

err = -ENODEV;

goto err_dev_unregister;

}

return 0;

err_dev_unregister:

unregister_chrdev_region(acme_dev, acme_count);

err_free_buf:

iounmap(acme_buf);

err_exit:

return err;

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 224/496

Character Driver Example Summary 3/4

static void __exit acme_exit(void)

{

cdev_del(&acme_cdev);

unregister_chrdev_region(acme_dev, acme_count);

iounmap(acme_buf);

}

module_init(acme_init);

module_exit(acme_exit);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 225/496

Character Driver Example Summary 4/4

I Kernel: character device writer
I Define the file operations callbacks for the device file: read,

write, ioctl, ...
I In the module init function, reserve major and minor numbers

with register_chrdev_region(), init a cdev structure with
your file operations and add it to the system with cdev_add().

I User-space: system administration
I Load the character driver module
I Create device files with matching major and minor numbers if

needed. The device file is ready to use!

I User-space: system user
I Open the device file, read, write, or send ioctl’s to it.

I Kernel
I Executes the corresponding file operations

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 226/496

Practical lab - Character Drivers

I Writing a simple character driver,
to write data to the serial port.

I On your workstation, checking that
transmitted data are received
correctly.

I Exchanging data between
userspace and kernel space.

I Practicing with the character
device driver API.

I Using kernel standard error codes.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 227/496

Embedded Linux driver development

Processes and scheduling

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 228/496

Process, thread?

I Confusion about the terms process, thread and task
I In Unix, a process is created using fork() and is composed of

I An address space, which contains the program code, data,
stack, shared libraries, etc.

I One thread, that starts executing the main() function.
I Upon creation, a process contains one thread

I Additional threads can be created inside an existing process,
using pthread_create()

I They run in the same address space as the initial thread of the
process

I They start executing a function passed as argument to
pthread_create()

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 229/496

Process, thread: kernel point of view

I The kernel represents each thread running in the system by a
structure of type task_struct

I From a scheduling point of view, it makes no difference
between the initial thread of a process and all additional
threads created dynamically using pthread_create()

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 230/496

A thread life

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 231/496

Execution of system calls

The execution of system calls takes place in the context of the
thread requesting them.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 232/496

Embedded Linux driver development

Sleeping

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 233/496

Sleeping

Sleeping is needed when a process (user space or kernel space) is
waiting for data.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 234/496

How to sleep 1/3

I Must declare a wait queue
I A wait queue will be used to store the list of threads waiting

for an event
I Static queue declaration

I useful to declare as a global variable
I DECLARE_WAIT_QUEUE_HEAD(module_queue);

I Or dynamic queue declaration
I Useful to embed the wait queue inside another data structure

wait_queue_head_t queue;

init_waitqueue_head(&queue);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 235/496

How to sleep 2/3

I Several ways to make a kernel process sleep
I void wait_event(queue, condition);

I Sleeps until the task is woken up and the given C expression is
true. Caution: can’t be interrupted (can’t kill the user-space
process!)

I int wait_event_killable(queue, condition);

I Can be interrupted, but only by a fatal signal (SIGKILL).
Returns -ERESTARSYS if interrupted.

I int wait_event_interruptible(queue, condition);

I Can be interrupted by any signal. Returns -ERESTARTSYS if
interrupted.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 236/496

How to sleep 3/3

I int wait_event_timeout(queue, condition, timeout);

I Also stops sleeping when the task is woken up and the timeout
expired. Returns 0 if the timeout elapsed, non-zero if the
condition was met.

I int wait_event_interruptible_timeout(queue,

condition, timeout);

I Same as above, interruptible. Returns 0 if the timeout elapsed,
-ERESTARTSYS if interrupted, positive value if the condition
was met.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 237/496

How to Sleep - Example

ret = wait_event_interruptible

(sonypi_device.fifo_proc_list,

kfifo_len(sonypi_device.fifo) != 0);

if (ret)

return ret;

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 238/496

Waking up!

I Typically done by interrupt handlers when data sleeping
processes are waiting for becomes available.

I wake_up(&queue);
I Wakes up all processes in the wait queue

I wake_up_interruptible(&queue);
I Wakes up all processes waiting in an interruptible sleep on the

given queue

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 239/496

Exclusive vs. non-exclusive

I wait_event_interruptible() puts a task in a
non-exclusive wait.

I All non-exclusive tasks are woken up by wake_up() /
wake_up_interruptible()

I wait_event_interruptible_exclusive() puts a task in
an exclusive wait.

I wake_up() / wake_up_interruptible() wakes up all
non-exclusive tasks and only one exclusive task

I wake_up_all() / wake_up_interruptible_all() wakes up
all non-exclusive and all exclusive tasks

I Exclusive sleeps are useful to avoid waking up multiple tasks
when only one will be able to “consume” the event.

I Non-exclusive sleeps are useful when the event can “benefit”
to multiple tasks.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 240/496

Sleeping and Waking up - Implementation 1/2

I The scheduler doesn’t keep evaluating the sleeping condition!

#define __wait_event(wq, condition) \

do { \

DEFINE_WAIT(__wait); \

\

for (;;) { \

prepare_to_wait(&wq, &__wait, \

TASK_UNINTERRUPTIBLE); \

if (condition) \

break; \

schedule(); \

} \

finish_wait(&wq, &__wait); \

} while (0)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 241/496

Sleeping and Waking up - Implementation 2/2

I wait_event_interruptible(queue, condition);

I The process is put in the TASK_INTERRUPTIBLE state.

I wake_up_interruptible(&queue);

I All processes waiting in queue are woken up, so they get
scheduled later and have the opportunity to reevaluate the
condition.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 242/496

Embedded Linux driver development

Interrupt Management

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 243/496

Registering an interrupt handler 1/2

I Defined in include/linux/interrupt.h
I int request_irq(unsigned int irq,

irq_handler_t handler, unsigned long irq_flags,

const char *devname, void *dev_id);

I irq is the requested IRQ channel
I handler is a pointer to the IRQ handler
I irq_flags are option masks (see next slide)
I devname is the registered name
I dev_id is a pointer to some data. It cannot be NULL as it is

used as an identifier for free_irq when using shared IRQs.

I void free_irq(unsigned int irq, void *dev_id);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 244/496

Registering an interrupt handler 2/2

I Main irq_flags bit values (can be combined, none is fine
too)

I IRQF_SHARED
I The interrupt channel can be shared by several devices.

Requires a hardware status register telling whether an IRQ
was raised or not.

I IRQF_SAMPLE_RANDOM
I Use the IRQ arrival time to feed the kernel random number

generator.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 245/496

Interrupt handler constraints

I No guarantee in which address space the system will be in
when the interrupt occurs: can’t transfer data to and from
user space

I Interrupt handler execution is managed by the CPU, not by
the scheduler. Handlers can’t run actions that may sleep,
because there is nothing to resume their execution. In
particular, need to allocate memory with GFP_ATOMIC.

I Interrupt handlers are run with all interrupts disabled (since
2.6.36). Therefore, they have to complete their job quickly
enough, to avoiding blocking interrupts for too long.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 246/496

/proc/interrupts on a Panda board

CPU0 CPU1

39: 4 0 GIC TWL6030-PIH

41: 0 0 GIC l3-dbg-irq

42: 0 0 GIC l3-app-irq

43: 0 0 GIC prcm

44: 20294 0 GIC DMA

52: 0 0 GIC gpmc

...

IPI0: 0 0 Timer broadcast interrupts

IPI1: 23095 25663 Rescheduling interrupts

IPI2: 0 0 Function call interrupts

IPI3: 231 173 Single function call interrupts

IPI4: 0 0 CPU stop interrupts

LOC: 196407 136995 Local timer interrupts

Err: 0

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 247/496

Interrupt handler prototype

I irqreturn_t foo_interrupt(int irq, void *dev_id)

I irq, the IRQ number
I dev_id, the opaque pointer that was passed to

request_irq()

I Return value
I IRQ_HANDLED: recognized and handled interrupt
I IRQ_NONE: not on a device managed by the module. Useful to

share interrupt channels and/or report spurious interrupts to
the kernel.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 248/496

Typical interrupt handler’s job

I Acknowledge the interrupt to the device (otherwise no more
interrupts will be generated, or the interrupt will keep firing
over and over again)

I Read/write data from/to the device

I Wake up any waiting process waiting for the completion of an
operation, typically using wait queues
wake_up_interruptible(&module_queue);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 249/496

Threaded interrupts

I In 2.6.30, support for threaded interrupts has been added to
the Linux kernel

I The interrupt handler is executed inside a thread.
I Allows to block during the interrupt handler, which is often

needed for I2C/SPI devices as the interrupt handler needs to
communicate with them.

I Allows to set a priority for the interrupt handler execution,
which is useful for real-time usage of Linux

I int request_threaded_irq(unsigned int irq,

irq_handler_t handler, irq_handler_t thread_fn,

unsigned long flags, const char *name, void *dev);

I handler, “hard IRQ” handler
I thread_fn, executed in a thread

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 250/496

Top half and bottom half processing

I Splitting the execution of interrupt handlers in 2 parts
I Top half

I This is the real interrupt handler, which should complete as
quickly as possible since all interrupts are disabled. If possible,
take the data out of the device and schedule a bottom half to
handle it.

I Bottom half
I Is the general Linux name for various mechanisms which allow

to postpone the handling of interrupt-related work.
Implemented in Linux as softirqs, tasklets or workqueues.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 251/496

Top half and bottom half diagram

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 252/496

Softirqs

I Softirqs are a form of bottom half processing

I The softirqs handlers are executed with all interrupts enabled,
and a given softirq handler can run simultaneously on multiple
CPUs

I They are executed once all interrupt handlers have completed,
before the kernel resumes scheduling processes, so sleeping is
not allowed.

I The number of softirqs is fixed in the system, so softirqs are
not directly used by drivers, but by complete kernel
subsystems (network, etc.)

I The list of softirqs is defined in
include/linux/interrupt.h: HI, TIMER, NET_TX, NET_RX,
BLOCK, BLOCK_IOPOLL, TASKLET, SCHED, HRTIMER, RCU

I The HI and TASKLET softirqs are used to execute tasklets

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 253/496

Tasklets

I Tasklets are executed within the HI and TASKLET softirqs.
They are executed with all interrupts enabled, but a given
tasklet is guaranteed to execute on a single CPU at a time.

I A tasklet can be declared statically with the
DECLARE_TASKLET() macro or dynamically with the
tasklet_init() function. A tasklet is simply implemented
as a function. Tasklets can easily be used by individual device
drivers, as opposed to softirqs.

I The interrupt handler can schedule the execution of a tasklet
with

I tasklet_schedule() to get it executed in the TASKLET

softirq
I tasklet_hi_schedule() to get it executed in the HI softirq

(higher priority)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 254/496

Tasklet Example: simplified atmel serial.c 1/2

/* The tasklet function */

static void atmel_tasklet_func(unsigned long data) {

struct uart_port *port = (struct uart_port *)data;

[...]

}

/* Registering the tasklet */

init function(...) {

[...]

tasklet_init(&atmel_port->tasklet,

atmel_tasklet_func,(unsigned long)port);

[...]

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 255/496

Tasklet Example: simplified atmel serial.c 2/2

/* Removing the tasklet */

cleanup function(...) {

[...]

tasklet_kill(&atmel_port->tasklet);

[...]

}

/* Triggering execution of the tasklet */

somewhere function(...) {

tasklet_schedule(&atmel_port->tasklet);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 256/496

Workqueues

I Workqueues are a general mechanism for deferring work. It is
not limited in usage to handling interrupts.

I The function registered as workqueue is executed in a thread,
which means:

I All interrupts are enabled
I Sleeping is allowed

I A workqueue is registered with INIT_WORK and typically
triggered with queue_work()

I The complete API, in include/linux/workqueue.h

provides many other possibilities (creating its own workqueue
threads, etc.)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 257/496

Interrupt management summary

I Device driver
I When the device file is first opened, register an interrupt

handler for the device’s interrupt channel.

I Interrupt handler
I Called when an interrupt is raised.
I Acknowledge the interrupt
I If needed, schedule a tasklet taking care of handling data.

Otherwise, wake up processes waiting for the data.

I Tasklet
I Process the data
I Wake up processes waiting for the data

I Device driver
I When the device is no longer opened by any process,

unregister the interrupt handler.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 258/496

Practical lab - Interrupts

I Adding read capability to the
character driver developed earlier.

I Register an interrupt handler.

I Waiting for data to be available in
the read file operation.

I Waking up the code when data are
available from the device.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 259/496

Embedded Linux driver development

Concurrent Access to Resources

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 260/496

Sources of concurrency issues

I In terms of concurrency, the kernel has the same constraint as
a multi-threaded program: its state is global and visible in all
executions contexts

I Concurrency arises because of
I Interrupts, which interrupts the current thread to execute an

interrupt handler. They may be using shared resources.
I Kernel preemption, if enabled, causes the kernel to switch from

the execution of one system call to another. They may be
using shared resources.

I Multiprocessing, in which case code is really executed in
parallel on different processors, and they may be using shared
resources as well.

I The solution is to keep as much local state as possible and for
the shared resources, use locking.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 261/496

Concurrency protection with locks

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 262/496

Linux mutexes

I The kernel’s main locking primitive

I The process requesting the lock blocks when the lock is
already held. Mutexes can therefore only be used in contexts
where sleeping is allowed.

I Mutex definition:
I #include <linux/mutex.h>

I Initializing a mutex statically:
I DEFINE_MUTEX(name);

I Or initializing a mutex dynamically:
I void mutex_init(struct mutex *lock);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 263/496

Locking and Unlocking Mutexes 1/2

I void mutex_lock(struct mutex *lock);

I Tries to lock the mutex, sleeps otherwise.
I Caution: can’t be interrupted, resulting in processes you

cannot kill!

I int mutex_lock_killable(struct mutex *lock);

I Same, but can be interrupted by a fatal (SIGKILL) signal. If
interrupted, returns a non zero value and doesn’t hold the
lock. Test the return value!!!

I int mutex_lock_interruptible(struct mutex *lock);

I Same, but can be interrupted by any signal.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 264/496

Locking and Unlocking Mutexes 2/2

I int mutex_trylock(struct mutex *lock);

I Never waits. Returns a non zero value if the mutex is not
available.

I int mutex_is_locked(struct mutex *lock);

I Just tells whether the mutex is locked or not.

I void mutex_unlock(struct mutex *lock);

I Releases the lock. Do it as soon as you leave the critical
section.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 265/496

Spinlocks

I Locks to be used for code that is not allowed to sleep
(interrupt handlers), or that doesn’t want to sleep (critical
sections). Be very careful not to call functions which can
sleep!

I Originally intended for multiprocessor systems
I Spinlocks never sleep and keep spinning in a loop until the

lock is available.
I Spinlocks cause kernel preemption to be disabled on the CPU

executing them.
I The critical section protected by a spinlock is not allowed to

sleep.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 266/496

Initializing Spinlocks

I Statically
I DEFINE_SPINLOCK(my_lock);

I Dynamically
I void spin_lock_init(spinlock_t *lock);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 267/496

Using Spinlocks 1/2

I Several variants, depending on where the spinlock is called:
I void spin_lock(spinlock_t *lock);

I void spin_unlock(spinlock_t *lock);

I Doesn’t disable interrupts. Used for locking in process context
(critical sections in which you do not want to sleep).

I void spin_lock_irqsave(spinlock_t *lock,

unsigned long flags);

I void spin_unlock_irqrestore(spinlock_t *lock,

unsigned long flags);

I Disables / restores IRQs on the local CPU.
I Typically used when the lock can be accessed in both process

and interrupt context, to prevent preemption by interrupts.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 268/496

Using Spinlocks 2/2

I void spin_lock_bh(spinlock_t *lock);

I void spin_unlock_bh(spinlock_t *lock);

I Disables software interrupts, but not hardware ones.
I Useful to protect shared data accessed in process context and

in a soft interrupt (bottom half).
I No need to disable hardware interrupts in this case.

I Note that reader / writer spinlocks also exist.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 269/496

Spinlock example

I Spinlock structure embedded into uart_port

struct uart_port {

spinlock_t lock;

/* Other fields */

};

I Spinlock taken/released with protection against interrupts

static unsigned int ulite_tx_empty

(struct uart_port *port) {

unsigned long flags;

spin_lock_irqsave(&port->lock, flags);

/* Do something */

spin_unlock_irqrestore(&port->lock, flags);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 270/496

Deadlock Situations

I They can lock up your system. Make sure they never happen!

I Don’t call a function that can try to get access to the same
lock

I Holding multiple locks is risky!

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 271/496

Kernel lock validator

I From Ingo Molnar and Arjan van de Ven
I Adds instrumentation to kernel locking code
I Detect violations of locking rules during system life, such as:

I Locks acquired in different order (keeps track of locking
sequences and compares them).

I Spinlocks acquired in interrupt handlers and also in process
context when interrupts are enabled.

I Not suitable for production systems but acceptable overhead in
development.

I See Documentation/lockdep-design.txt for details

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 272/496

http://free-electrons.com/kerneldoc/latest/lockdep-design.txt

Alternatives to Locking

I As we have just seen, locking can have a strong negative
impact on system performance. In some situations, you could
do without it.

I By using lock-free algorithms like Read Copy Update (RCU).
I RCU API available in the kernel (See

http://en.wikipedia.org/wiki/RCU).
I When available, use atomic operations.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 273/496

http://en.wikipedia.org/wiki/RCU

Atomic Variables 1/2

I Useful when the shared resource is an integer value

I Even an instruction like n++ is not guaranteed to be atomic
on all processors!

I Atomic operations definitions
I #include <asm/atomic.h>

I atomic_t
I Contains a signed integer (at least 24 bits)

I Atomic operations (main ones)
I Set or read the counter:

I void atomic_set(atomic_t *v, int i);

I int atomic_read(atomic_t *v);

I Operations without return value:
I void atomic_inc(atomic_t *v);

I void atomic_dec(atomic_t *v);

I void atomic_add(int i, atomic_t *v);

I void atomic_sub(int i, atomic_t *v);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 274/496

Atomic Variables 2/2

I Similar functions testing the result:
I int atomic_inc_and_test(...);

I int atomic_dec_and_test(...);

I int atomic_sub_and_test(...);

I Functions returning the new value:
I int atomic_inc_return(...);

I int atomic_dec_return(...);

I int atomic_add_return(...);

I int atomic_sub_return(...);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 275/496

Atomic Bit Operations

I Supply very fast, atomic operations

I On most platforms, apply to an unsigned long type.

I Apply to a void type on a few others.
I Set, clear, toggle a given bit:

I void set_bit(int nr, unsigned long * addr);

I void clear_bit(int nr, unsigned long * addr);

I void change_bit(int nr, unsigned long * addr);

I Test bit value:
I int test_bit(int nr, unsigned long *addr);

I Test and modify (return the previous value):
I int test_and_set_bit(...);

I int test_and_clear_bit(...);

I int test_and_change_bit(...);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 276/496

Practical lab - Locking

I Add locking to the driver to
prevent concurrent accesses to
shared resources

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 277/496

Embedded Linux driver development

Debugging and tracing

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 278/496

Debugging Using Messages

I Three APIs are available
I The old printk(), no longer recommended for new debugging

messages
I The pr_*() family of functions: pr_emerg(), pr_alert(),

pr_crit(), pr_err(), pr_warning(), pr_notice(),
pr_info(), pr_cont() and the special pr_debug()

I They take a classic format string with arguments
I defined in include/linux/printk.h

I The dev_*() family of functions: dev_emerg(),
dev_alert(), dev_crit(), dev_err(), dev_warning(),
dev_notice(), dev_info() and the special dev_dbg()

I They take a pointer to struct device as first argument
(covered later), and then a format string with arguments

I defined in include/linux/device.h
I To be used in drivers integrated with the Linux device model

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 279/496

pr debug() and dev dbg()

I When the driver is compiled with DEBUG defined, all those
messages are compiled and printed at the debug level. DEBUG

can be defined by #define DEBUG at the beginning of the
driver, or using ccflags-$(CONFIG_DRIVER) += -DDEBUG

in the Makefile

I When the kernel is compiled with CONFIG_DYNAMIC_DEBUG,
then those messages can dynamically be enabled on a per-file,
per-module or per-message basis

I See Documentation/dynamic-debug-howto.txt for details
I Very powerful feature to only get the debug messages you’re

interested in.

I When DEBUG is not defined and CONFIG_DYNAMIC_DEBUG is
not enabled, those messages are not compiled in.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 280/496

http://free-electrons.com/kerneldoc/latest/dynamic-debug-howto.txt

Configuring The Priority

I Each message is associated to a priority, ranging from 0 for
emergency to 7 for debug.

I All the messages, regardless of their priority, are stored in the
kernel log ring buffer

I Typically accessed using the dmesg command

I Some of the messages may appear on the console, depending
on their priority and the configuration of

I The loglevel kernel parameter, which defines the priority
above which messages are displayed on the console. See
Documentation/kernel-parameters.txt for details.

I The value of /proc/sys/kernel/printk, which allows to
change at runtime the priority above which messages are
displayed on the console. See
Documentation/sysctl/kernel.txt for details.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 281/496

http://free-electrons.com/kerneldoc/latest/kernel-parameters.txt
http://free-electrons.com/kerneldoc/latest/sysctl/kernel.txt

DebugFS

I A virtual filesystem to export debugging information to
user-space.

I Kernel configuration: DEBUG_FS
I Kernel hacking -> Debug Filesystem

I The debugging interface disappears when Debugfs is
configured out.

I You can mount it as follows:
I sudo mount -t debugfs none /sys/kernel/debug

I First described on http://lwn.net/Articles/115405/
I API documented in the Linux Kernel Filesystem API:

I Documentation/DocBook/filesystems/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 282/496

http://lwn.net/Articles/115405/
http://free-electrons.com/kerneldoc/latest/DocBook/filesystems/

DebugFS API

I Create a sub-directory for your driver:
I struct dentry *debugfs_create_dir(const char *name,

struct dentry *parent);

I Expose an integer as a file in DebugFS:
I struct dentry *debugfs_create_{u,x}{8,16,32}

(const char *name, mode_t mode, struct dentry *parent,

u8 *value);

I u for decimal representation
I x for hexadecimal representation

I Expose a binary blob as a file in DebugFS:
I struct dentry *debugfs_create_blob(const char *name,

mode_t mode, struct dentry *parent,

struct debugfs_blob_wrapper *blob);

I Also possible to support writable DebugFS files or customize
the output using the more generic debugfs_create_file()

function.
Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 283/496

Deprecated Debugging Mechanisms

I Some additional debugging mechanisms, whose usage is now
considered deprecated

I Adding special ioctl() commands for debugging purposes.
DebugFS is preferred.

I Adding special entries in the proc filesystem. DebugFS is
preferred.

I Adding special entries in the sysfs filesystem. DebugFS is
preferred.

I Using printk(). The pr_*() and dev_*() functions are
preferred.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 284/496

Using Magic SysRq

I Allows to run multiple debug / rescue commands even when
the kernel seems to be in deep trouble

I On PC: [Alt] + [SysRq] + <character>
I On embedded: break character on the serial line +

<character>

I Example commands:
I n: makes RT processes nice-able.
I t: shows the kernel stack of all sleeping processes
I w: shows the kernel stack of all running processes
I b: reboot the system
I You can even register your own!

I Detailed in Documentation/sysrq.txt

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 285/496

http://free-electrons.com/kerneldoc/latest/sysrq.txt

kgdb - A Kernel Debugger

I The execution of the kernel is fully controlled by gdb from
another machine, connected through a serial line.

I Can do almost everything, including inserting breakpoints in
interrupt handlers.

I Feature supported for the most popular CPU architectures

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 286/496

Using kgdb 1/2

I Details available in the kernel documentation:
Documentation/DocBook/kgdb/

I Recommended to turn on CONFIG_FRAME_POINTER to aid in
producing more reliable stack backtraces in gdb.

I You must include a kgdb I/O driver. One of them is kgdb

over serial console (kgdboc: kgdb over console, enabled by
CONFIG_KGDB_SERIAL_CONSOLE)

I Configure kgdboc at boot time by passing to the kernel:
I kgdboc=<tty-device>,<bauds>.
I For example: kgdboc=ttyS0,115200

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 287/496

http://free-electrons.com/kerneldoc/latest/DocBook/kgdb/

Using kgdb 2/2

I Then also pass kgdbwait to the kernel: it makes kgdb wait
for a debugger connection.

I Boot your kernel, and when the console is initialized, interrupt
the kernel with Alt + SyrRq + g.

I On your workstation, start gdb as follows:
I gdb ./vmlinux
I (gdb) set remotebaud 115200
I (gdb) target remote /dev/ttyS0

I Once connected, you can debug a kernel the way you would
debug an application program.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 288/496

Debugging with a JTAG Interface

I Two types of JTAG dongles
I Those offering a gdb compatible interface, over a serial port or

an Ethernet connexion. gdb can directly connect to them.
I Those not offering a gdb compatible interface are generally

supported by OpenOCD (Open On Chip Debugger):
http://openocd.sourceforge.net/

I OpenOCD is the bridge between the gdb debugging language
and the JTAG-dongle specific language

I See the very complete documentation: http://openocd.

sourceforge.net/documentation/online-docs/
I For each board, you’ll need an OpenOCD configuration file

(ask your supplier)

I See very useful details on using Eclipse / gcc / gdb /
OpenOCD on Windows (similar usage):

I http://www2.amontec.com/sdk4arm/ext/jlynch-

tutorial-20061124.pdf
I http://www.yagarto.de/howto/yagarto2/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 289/496

http://openocd.sourceforge.net/
http://openocd.sourceforge.net/documentation/online-docs/
http://openocd.sourceforge.net/documentation/online-docs/
http://www2.amontec.com/sdk4arm/ext/jlynch-tutorial-20061124.pdf
http://www2.amontec.com/sdk4arm/ext/jlynch-tutorial-20061124.pdf
http://www.yagarto.de/howto/yagarto2/

More Kernel Debugging Tips

I Enable CONFIG_KALLSYMS_ALL
I General Setup -

> Configure standard kernel features
I To get oops messages with symbol names instead of raw

addresses
I This obsoletes the ksymoops tool

I If your kernel doesn’t boot yet or hangs without any message,
you can activate the low-level debugging option
(Kernel Hacking section, only available on arm and
unicore32): CONFIG_DEBUG_LL=y

I Techniques to locate the C instruction which caused an oops
I http://kerneltrap.org/node/3648

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 290/496

http://kerneltrap.org/node/3648

Kernel Crash Analysis with kexec/kdump

I kexec system call: makes it
possible to call a new kernel,
without rebooting and going
through the BIOS / firmware.

I Idea: after a kernel panic, make
the kernel automatically execute a
new, clean kernel from a reserved
location in RAM, to perform
post-mortem analysis of the
memory of the crashed kernel.

I See Documentation/kdump/

kdump.txt in the kernel sources
for details.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 291/496

http://free-electrons.com/kerneldoc/latest/kdump/kdump.txt
http://free-electrons.com/kerneldoc/latest/kdump/kdump.txt

Tracing with SystemTap

I http://sourceware.org/systemtap/
I Infrastructure to add instrumentation to a running kernel:

trace functions, read and write variables, follow pointers,
gather statistics...

I Eliminates the need to modify the kernel sources to add one’s
own instrumentation to investigated a functional or
performance problem.

I Uses a simple scripting language.
I Several example scripts and probe points are available.
I Based on the Kprobes instrumentation infrastructure.
I See Documentation/kprobes.txt in kernel sources.
I Now supported on most popular CPUs.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 292/496

http://sourceware.org/systemtap/
http://free-electrons.com/kerneldoc/latest/kprobes.txt

SystemTap Script Example (1)

#! /usr/bin/env stap

Using statistics and maps to examine kernel memory

allocations

global kmalloc

probe kernel.function("__kmalloc") {

kmalloc[execname()] <<< $size

}

Exit after 10 seconds

probe timer.ms(10000) {

exit()

}

probe end {

foreach ([name] in kmalloc) {

printf("Allocations for %s\n", name)

printf("Count: %d allocations\n", @count(kmalloc[name]))

printf("Sum: %d Kbytes\n", @sum(kmalloc[name])/1024)

printf("Average: %d bytes\n", @avg(kmalloc[name]))

printf("Min: %d bytes\n", @min(kmalloc[name]))

printf("Max: %d bytes\n", @max(kmalloc[name]))

print("\nAllocations by size in bytes\n")

print(@hist_log(kmalloc[name]))

printf("---\n\n")

}

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 293/496

SystemTap Script Example (2)

#! /usr/bin/env stap

Logs each file read performed by each process

probe kernel.function ("vfs_read")

{

dev_nr = $file->f_dentry->d_inode->i_sb->s_dev

inode_nr = $file->f_dentry->d_inode->i_ino

printf ("%s(%d) %s 0x%x/%d\n",

execname(), pid(), probefunc(), dev_nr, inode_nr)

}

Nice tutorial on
http://sources.redhat.com/systemtap/tutorial.pdf

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 294/496

http://sources.redhat.com/systemtap/tutorial.pdf

Kernel Markers

I Capability to add static markers to kernel code.

I Almost no impact on performance, until the marker is
dynamically enabled, by inserting a probe kernel module.

I Useful to insert trace points that won’t be impacted by
changes in the Linux kernel sources.

I See marker and probe example in samples/markers in the
kernel sources.

I See http://en.wikipedia.org/wiki/Kernel_marker

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 295/496

http://en.wikipedia.org/wiki/Kernel_marker

LTTng

I http://lttng.org
I The successor of the Linux Trace Toolkit (LTT)
I Toolkit allowing to collect and analyze tracing information

from the kernel, based on kernel markers and kernel
tracepoints.

I So far, based on kernel patches, but doing its best to use
in-tree solutions, and to be merged in the future.

I Very precise timestamps, very little overhead.
I Useful documentation on

http://lttng.org/documentation

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 296/496

http://lttng.org
http://lttng.org/documentation

LTTV

I Viewer for LTTng traces
I Support for huge traces (tested with 15 GB ones)
I Can combine multiple tracefiles in a single view.
I Graphical or text interface

I See http://lttng.org/files/lttv-doc/user_guide/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 297/496

http://lttng.org/files/lttv-doc/user_guide/

Practical lab - Kernel debugging

I Use the dynamic printk feature.

I Add debugfs entries

I Load a broken driver and see it
crash

I Analyze the error information
dumped by the kernel.

I Disassemble the code and locate
the exact C instruction which
caused the failure.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 298/496

Embedded Linux driver development

mmap

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 299/496

mmap

I Possibility to have parts of the virtual address space of a
program mapped to the contents of a file

I Particularly useful when the file is a device file

I Allows to access device I/O memory and ports without having
to go through (expensive) read, write or ioctl calls

I One can access to current mapped files by two means:
I /proc/<pid>/maps
I pmap <pid>

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 300/496

/proc/<pid>/maps

start-end perm offset major:minor inode mapped file name

...

7f4516d04000-7f4516d06000 rw-s 1152a2000 00:05 8406 /dev/dri/card0

7f4516d07000-7f4516d0b000 rw-s 120f9e000 00:05 8406 /dev/dri/card0

...

7f4518728000-7f451874f000 r-xp 00000000 08:01 268909 /lib/x86_64-linux-gnu/libexpat.so.1.5.2

7f451874f000-7f451894f000 ---p 00027000 08:01 268909 /lib/x86_64-linux-gnu/libexpat.so.1.5.2

7f451894f000-7f4518951000 r--p 00027000 08:01 268909 /lib/x86_64-linux-gnu/libexpat.so.1.5.2

7f4518951000-7f4518952000 rw-p 00029000 08:01 268909 /lib/x86_64-linux-gnu/libexpat.so.1.5.2

...

7f451da4f000-7f451dc3f000 r-xp 00000000 08:01 1549 /usr/bin/Xorg

7f451de3e000-7f451de41000 r--p 001ef000 08:01 1549 /usr/bin/Xorg

7f451de41000-7f451de4c000 rw-p 001f2000 08:01 1549 /usr/bin/Xorg

...

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 301/496

mmap Overview

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 302/496

How to Implement mmap - User Space

I Open the device file

I Call the mmap system call (see man mmap for details):
void * mmap(

void *start, /* Often 0, preferred starting address */

size_t length, /* Length of the mapped area */

int prot, /* Permissions: read, write, execute */

int flags, /* Options: shared mapping, private copy... */

int fd, /* Open file descriptor */

off_t offset /* Offset in the file */

);

I You get a virtual address you can write to or read from.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 303/496

How to Implement mmap - Kernel Space

I Character driver: implement an mmap file operation and add it
to the driver file operations:

int (*mmap) (

struct file *, /* Open file structure */

struct vm_area_struct * /* Kernel VMA structure */

);

I Initialize the mapping.
I Can be done in most cases with the remap_pfn_range()

function, which takes care of most of the job.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 304/496

remap pfn range()

I pfn: page frame number

I The most significant bits of the page address (without the
bits corresponding to the page size).

#include <linux/mm.h>

int remap_pfn_range(

struct vm_area_struct *, /* VMA struct */

unsigned long virt_addr, /* Starting user

* virtual address */

unsigned long pfn, /* pfn of the starting

* physical address */

unsigned long size, /* Mapping size */

pgprot_t /* Page permissions */

);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 305/496

Simple mmap Implementation

static int acme_mmap

(struct file * file, struct vm_area_struct *vma)

{

size = vma->vm_end - vma->vm_start;

if (size > ACME_SIZE)

return -EINVAL;

if (remap_pfn_range(vma,

vma->vm_start,

ACME_PHYS >> PAGE_SHIFT,

size,

vma->vm_page_prot))

return -EAGAIN;

return 0;

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 306/496

devmem2

I http://free-electrons.com/pub/mirror/devmem2.c, by
Jan-Derk Bakker

I Very useful tool to directly peek (read) or poke (write) I/O
addresses mapped in physical address space from a shell
command line!

I Very useful for early interaction experiments with a device,
without having to code and compile a driver.

I Uses mmap to /dev/mem.
I Examples (b: byte, h: half, w: word)

I devmem2 0x000c0004 h (reading)
I devmem2 0x000c0008 w 0xffffffff (writing)

I devmem is now available in BusyBox, making it even easier to
use.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 307/496

http://free-electrons.com/pub/mirror/devmem2.c

mmap Summary

I The device driver is loaded. It defines an mmap file operation.

I A user space process calls the mmap system call.

I The mmap file operation is called.

I It initializes the mapping using the device physical address.

I The process gets a starting address to read from and write to
(depending on permissions).

I The MMU automatically takes care of converting the process
virtual addresses into physical ones.

I Direct access to the hardware without any expensive read or
write system calls

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 308/496

Embedded Linux driver development

DMA

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 309/496

DMA Integration

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 310/496

Constraints with a DMA

I A DMA deals with physical addresses, so:
I Programming a DMA requires retrieving a physical address at

some point (virtual addresses are usually used)
I The memory accessed by the DMA shall be physically

contiguous

I The CPU can access memory through a data cache
I Using the cache can be more efficient (faster accesses to the

cache than the bus)
I But the DMA does not access to the CPU cache, so one need

to take care of cache coherency (cache content vs memory
content)

I Either flush or invalidate the cache lines corresponding to the
buffer accessed by DMA and processor at strategic times

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 311/496

DMA Memory Constraints

I Need to use contiguous memory in physical space.

I Can use any memory allocated by kmalloc (up to 128 KB) or
__get_free_pages (up to 8MB).

I Can use block I/O and networking buffers, designed to
support DMA.

I Can not use vmalloc memory (would have to setup DMA on
each individual physical page).

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 312/496

Reserving Memory for DMA

I To make sure you’ve got enough RAM for big DMA
transfers...

I Example assuming you have 32 MB of RAM, and need 2 MB
for DMA:

I Boot your kernel with mem=30
I The kernel will just use the first 30 MB of RAM.
I Driver code can now reclaim the 2 MB left:

dmabuf = ioremap (

0x1e00000, /* Start: 30 MB */

0x200000 /* Size: 2 MB */

);

I You can also use mem= to reserve specific RAM areas for
specific devices (DSP, video device...).

I Panda board example:
I mem=456M@0x80000000, mem=512M@0xA0000000

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 313/496

Memory Synchronization Issues

I Memory caching could interfere with DMA
I Before DMA to device

I Need to make sure that all writes to DMA buffer are
committed.

I After DMA from device
I Before drivers read from DMA buffer, need to make sure that

memory caches are flushed.

I Bidirectional DMA
I Need to flush caches before and after the DMA transfer.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 314/496

Linux DMA API

I The kernel DMA utilities can take care of:
I Either allocating a buffer in a cache coherent area,
I Or making sure caches are flushed when required,
I Managing the DMA mappings and IOMMU (if any).
I See Documentation/DMA-API.txt for details about the

Linux DMA generic API.
I Most subsystems (such as PCI or USB) supply their own DMA

API, derived from the generic one. May be sufficient for most
needs.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 315/496

http://free-electrons.com/kerneldoc/latest/DMA-API.txt

Coherent or Streaming DMA Mappings

I Coherent mappings
I The kernel allocates a suitable buffer and sets the mapping for

the driver.
I Can simultaneously be accessed by the CPU and device.
I So, has to be in a cache coherent memory area.
I Usually allocated for the whole time the module is loaded.
I Can be expensive to setup and use on some platforms.

I Streaming mappings
I The kernel just sets the mapping for a buffer provided by the

driver.
I Use a buffer already allocated by the driver.
I Mapping set up for each transfer. Keeps DMA registers free on

the hardware.
I Some optimizations also available.
I The recommended solution.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 316/496

Allocating Coherent Mappings

I The kernel takes care of both buffer allocation and mapping

#include <asm/dma-mapping.h>

void * /* Output: buffer address */

dma_alloc_coherent(

struct device *dev, /* device structure */

size_t size, /* Needed buffer size in bytes */

dma_addr_t *handle, /* Output: DMA bus address */

gfp_t gfp /* Standard GFP flags */

);

void dma_free_coherent(struct device *dev,

size_t size, void *cpu_addr, dma_addr_t handle);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 317/496

Setting up streaming mappings

I Works on buffers already allocated by the driver

#include <linux/dmapool.h>

dma_addr_t dma_map_single(

struct device *, /* device structure */

void *, /* input: buffer to use */

size_t, /* buffer size */

enum dma_data_direction /* Either DMA_BIDIRECTIONAL,

* DMA_TO_DEVICE or

* DMA_FROM_DEVICE */

);

void dma_unmap_single(struct device *dev, dma_addr_t handdle,

size_t size, enum dma_data_direction dir);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 318/496

DMA Streaming Mapping Notes

I When the mapping is active: only the device should access
the buffer (potential cache issues otherwise).

I The CPU can access the buffer only after unmapping! Use
locking to prevent CPU access to the buffer.

I Another reason: if required, this API can create an
intermediate bounce buffer (used if the given buffer is not
usable for DMA).

I The Linux API also supports scatter / gather DMA streaming
mappings.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 319/496

Embedded Linux driver development

Kernel Architecture for Device Drivers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 320/496

Kernel and Device Drivers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 321/496

Kernel and Device Drivers

I Many device drivers are not implemented directly as character
drivers

I They are implemented under a framework, specific to a given
device type (framebuffer, V4L, serial, etc.)

I The framework allows to factorize the common parts of drivers
for the same type of devices

I From userspace, they are still seen as character devices by the
applications

I The framework allows to provide a coherent userspace interface
(ioctl, etc.) for every type of device, regardless of the driver

I The device drivers rely on the bus infrastructure to enumerate
the devices and communicate with them.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 322/496

Kernel Frameworks

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 323/496

Example: Framebuffer Framework

I Kernel option CONFIG_FB
I menuconfig FB

I tristate "Support for frame buffer devices"

I Implemented in drivers/video/
I fb.c, fbmem.c, fbmon.c, fbcmap.c, fbsysfs.c, modedb.c,

fbcvt.c

I Implements a single character driver and defines the
user/kernel API

I First part of include/linux/fb.h

I Defines the set of operations a framebuffer driver must
implement and helper functions for the drivers

I struct fb_ops
I Second part of include/linux/fb.h (in ifdef __KERNEL__)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 324/496

Framebuffer Driver Skeleton

I Skeleton driver in drivers/video/skeletonfb.c

I Implements the set of framebuffer specific operations defined
by the struct fb_ops structure

I xxxfb_open()

I xxxfb_read()

I xxxfb_write()

I xxxfb_release()

I xxxfb_checkvar()

I xxxfb_setpar()

I xxxfb_setcolreg()

I xxxfb_blank()

I xxxfb_pan_display()

I xxxfb_fillrect()

I xxxfb_copyarea()

I xxxfb_imageblit()

I xxxfb_cursor()

I xxxfb_rotate()

I xxxfb_sync()

I xxxfb_ioctl()

I xxxfb_mmap()

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 325/496

Framebuffer Driver Skeleton

I After the implementation of the operations, definition of a
struct fb_ops structure
static struct fb_ops xxxfb_ops = {

.owner = THIS_MODULE,

.fb_open = xxxfb_open,

.fb_read = xxxfb_read,

.fb_write = xxxfb_write,

.fb_release = xxxfb_release,

.fb_check_var = xxxfb_check_var,

.fb_set_par = xxxfb_set_par,

.fb_setcolreg = xxxfb_setcolreg,

.fb_blank = xxxfb_blank,

.fb_pan_display = xxxfb_pan_display,

.fb_fillrect = xxxfb_fillrect, /* Needed !!! */

.fb_copyarea = xxxfb_copyarea, /* Needed !!! */

.fb_imageblit = xxxfb_imageblit, /* Needed !!! */

.fb_cursor = xxxfb_cursor, /* Optional !!! */

.fb_rotate = xxxfb_rotate,

.fb_sync = xxxfb_sync,

.fb_ioctl = xxxfb_ioctl,

.fb_mmap = xxxfb_mmap,

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 326/496

Framebuffer Driver Skeleton

I In the probe() function, registration of the framebuffer
device and operations
static int __devinit xxxfb_probe (struct pci_dev *dev,

const struct pci_device_id *ent)

{

struct fb_info *info;

[...]

info = framebuffer_alloc(sizeof(struct xxx_par), device);

[...]

info->fbops = &xxxfb_ops;

[...]

if (register_framebuffer(info) > 0)

return -EINVAL;

[...]

}

I register_framebuffer() will create the character device
that can be used by userspace applications with the generic
framebuffer API.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 327/496

Unified Device Model

I The 2.6 kernel included a significant new feature: a unified
device model

I Instead of having different ad-hoc mechanisms in the various
subsystems, the device model unifies the description of the
devices and their topology

I Minimization of code duplication
I Common facilities (reference counting, event notification,

power management, etc.)
I Enumerate the devices, view their interconnections, link the

devices to their buses and drivers, etc.

I Understanding the device model is necessary to understand
how device drivers fit into the Linux kernel architecture.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 328/496

Bus Drivers

I The first component of the device model is the bus driver
I One bus driver for each type of bus: USB, PCI, SPI, MMC,

I2C, etc.

I It is responsible for
I Registering the bus type (struct bus_type)
I Allowing the registration of adapter drivers (USB controllers,

I2C adapters, etc.), able of detecting the connected devices,
and providing a communication mechanism with the devices

I Allowing the registration of device drivers (USB devices, I2C
devices, PCI devices, etc.), managing the devices

I Matching the device drivers against the devices detected by
the adapter drivers.

I Provides an API to both adapter drivers and device drivers
I Defining driver and device specific structure, typically

xxx_driver and xxx_device

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 329/496

Example: USB Bus 1/2

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 330/496

Example: USB Bus 2/2

I Core infrastructure (bus driver)
I drivers/usb/core
I The bus_type is defined in drivers/usb/core/driver.c

and registered in drivers/usb/core/usb.c

I Adapter drivers
I drivers/usb/host
I For EHCI, UHCI, OHCI, XHCI, and their implementations on

various systems (Atmel, IXP, Xilinx, OMAP, Samsung, PXA,
etc.)

I Device drivers
I Everywhere in the kernel tree, classified by their type

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 331/496

Example of Device Driver

I To illustrate how drivers are implemented to work with the
device model, we will study the source code of a driver for a
USB network card

I It is USB device, so it has to be a USB device driver
I It is a network device, so it has to be a network device
I Most drivers rely on a bus infrastructure (here, USB) and

register themselves in a framework (here, network)

I We will only look at the device driver side, and not the
adapter driver side

I The driver we will look at is drivers/net/usb/rtl8150.c

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 332/496

Device Identifiers

I Defines the set of devices that this driver can manage, so that
the USB core knows for which devices this driver should be
used

I The MODULE_DEVICE_TABLE macro allows depmod to extract
at compile time the relation between device identifiers and
drivers, so that drivers can be loaded automatically by udev.
See
/lib/modules/$(uname -r)/modules.{alias,usbmap}

static struct usb_device_id rtl8150_table[] = {

{ USB_DEVICE(VENDOR_ID_REALTEK, PRODUCT_ID_RTL8150) },

{ USB_DEVICE(VENDOR_ID_MELCO, PRODUCT_ID_LUAKTX) },

{ USB_DEVICE(VENDOR_ID_MICRONET, PRODUCT_ID_SP128AR) },

{ USB_DEVICE(VENDOR_ID_LONGSHINE, PRODUCT_ID_LCS8138TX) },

{ USB_DEVICE(VENDOR_ID_OQO, PRODUCT_ID_RTL8150) },

{ USB_DEVICE(VENDOR_ID_ZYXEL, PRODUCT_ID_PRESTIGE) },

{}

};

MODULE_DEVICE_TABLE(usb, rtl8150_table);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 333/496

Instantiation of usb driver

I struct usb_driver is a structure defined by the USB core.
Each USB device driver must instantiate it, and register itself
to the USB core using this structure

I This structure inherits from struct driver, which is defined
by the device model.

static struct usb_driver rtl8150_driver = {

.name = "rtl8150",

.probe = rtl8150_probe,

.disconnect = rtl8150_disconnect,

.id_table = rtl8150_table,

.suspend = rtl8150_suspend,

.resume = rtl8150_resume

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 334/496

Driver (Un)Registration

I When the driver is loaded or unloaded, it must register or
unregister itself from the USB core

I Done using usb_register() and usb_deregister(),
provided by the USB core.
static int __init usb_rtl8150_init(void)

{

return usb_register(&rtl8150_driver);

}

static void __exit usb_rtl8150_exit(void)

{

usb_deregister(&rtl8150_driver);

}

module_init(usb_rtl8150_init);

module_exit(usb_rtl8150_exit);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 335/496

At Initialization

I The USB adapter driver that corresponds to the USB
controller of the system registers itself to the USB core

I The rtl8150 USB device driver registers itself to the USB
core

I The USB core now knows the association between the
vendor/product IDs of rtl8150 and the usb_driver

structure of this driver

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 336/496

When a Device is Detected

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 337/496

Probe Method

I The probe() method receives as argument a structure
describing the device, usually specialized by the bus
infrastructure (pci_dev, usb_interface, etc.)

I This function is responsible for
I Initializing the device, mapping I/O memory, registering the

interrupt handlers. The bus infrastructure provides methods to
get the addresses, interrupt numbers and other device-specific
information.

I Registering the device to the proper kernel framework, for
example the network infrastructure.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 338/496

Probe Method Example

static int rtl8150_probe(struct usb_interface *intf,

const struct usb_device_id *id)

{

rtl8150_t *dev;

struct net_device *netdev;

netdev = alloc_etherdev(sizeof(rtl8150_t));

[...]

dev = netdev_priv(netdev);

tasklet_init(&dev->tl, rx_fixup, (unsigned long)dev);

spin_lock_init(&dev->rx_pool_lock);

[...]

netdev->netdev_ops = &rtl8150_netdev_ops;

alloc_all_urbs(dev);

[...]

usb_set_intfdata(intf, dev);

SET_NETDEV_DEV(netdev, &intf->dev);

register_netdev(netdev);

return 0;

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 339/496

The Model is Recursive

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 340/496

sysfs

I The bus, device, drivers, etc. structures are internal to the
kernel

I The sysfs virtual filesystem offers a mechanism to export
such information to userspace

I Used for example by udev to provide automatic module
loading, firmware loading, device file creation, etc.

I sysfs is usually mounted in /sys
I /sys/bus/ contains the list of buses
I /sys/devices/ contains the list of devices
I /sys/class enumerates devices by class (net, input,

block...), whatever the bus they are connected to. Very useful!

I Take your time to explore /sys on your workstation.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 341/496

Platform Devices

I On embedded systems, devices are often not connected
through a bus allowing enumeration, hotplugging, and
providing unique identifiers for devices.

I However, we still want the devices to be part of the device
model.

I The solution to this is the platform driver / platform device
infrastructure.

I The platform devices are the devices that are directly
connected to the CPU, without any kind of bus.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 342/496

Implementation of the Platform Driver

I The driver implements a struct platform_driver structure
(example taken from drivers/serial/imx.c)
static struct platform_driver serial_imx_driver = {

.probe = serial_imx_probe,

.remove = serial_imx_remove,

.driver = {

.name = "imx-uart",

.owner = THIS_MODULE,

},

};

I And registers its driver to the platform driver infrastructure

static int __init imx_serial_init(void) {

ret = platform_driver_register(&serial_imx_driver);

}

static void __exit imx_serial_cleanup(void) {

platform_driver_unregister(&serial_imx_driver);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 343/496

Platform Device Instantiation 1/2

I As platform devices cannot be detected dynamically, they are
defined statically

I By direct instantiation of struct platform_device

structures, as done on some ARM platforms. Definition done
in the board-specific or SoC specific code.

I By using a device tree, as done on Power PC (and on some
ARM platforms) from which struct platform_device

structures are created

I Example on ARM, where the instantiation is done in
arch/arm/mach-imx/mx1ads.c
static struct platform_device imx_uart1_device = {

.name = "imx-uart",

.id = 0,

.num_resources = ARRAY_SIZE(imx_uart1_resources),

.resource = imx_uart1_resources,

.dev = {

.platform_data = &uart_pdata,

}

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 344/496

Platform device instantiation 2/2

I The device is part of a list
static struct platform_device *devices[] __initdata = {

&cs89x0_device,

&imx_uart1_device,

&imx_uart2_device,

};

I And the list of devices is added to the system during board
initialization
static void __init mx1ads_init(void)

{

[...]

platform_add_devices(devices, ARRAY_SIZE(devices));

}

MACHINE_START(MX1ADS, "Freescale MX1ADS")

[...]

.init_machine = mx1ads_init,

MACHINE_END

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 345/496

The Resource Mechanism

I Each device managed by a particular driver typically uses
different hardware resources: addresses for the I/O registers,
DMA channels, IRQ lines, etc.

I Such information can be represented using the
struct resource, and an array of struct resource is
associated to a platform_device

I Allows a driver to be instantiated for multiple devices
functioning similarly, but with different addresses, IRQs, etc.

static struct resource imx_uart1_resources[] = {

[0] = {

.start = 0x00206000,

.end = 0x002060FF,

.flags = IORESOURCE_MEM,

},

[1] = {

.start = (UART1_MINT_RX),

.end = (UART1_MINT_RX),

.flags = IORESOURCE_IRQ,

},

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 346/496

Using Resources

I When a platform_device is added to the system using
platform_add_device(), the probe() method of the
platform driver gets called

I This method is responsible for initializing the hardware,
registering the device to the proper framework (in our case,
the serial driver framework)

I The platform driver has access to the I/O resources:
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

base = ioremap(res->start, PAGE_SIZE);

sport->rxirq = platform_get_irq(pdev, 0);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 347/496

platform data Mechanism

I In addition to the well-defined resources, many drivers require
driver-specific information for each platform device

I Such information can be passed using the platform_data

field of struct device (from which
struct platform_device inherits)

I As it is a void * pointer, it can be used to pass any type of
information.

I Typically, each driver defines a structure to pass information
through platform_data

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 348/496

platform data example 1/2

I The i.MX serial port driver defines the following structure to
be passed through platform_data

struct imxuart_platform_data {

int (*init)(struct platform_device *pdev);

void (*exit)(struct platform_device *pdev);

unsigned int flags;

void (*irda_enable)(int enable);

unsigned int irda_inv_rx:1;

unsigned int irda_inv_tx:1;

unsigned short transceiver_delay;

};

I The MX1ADS board code instantiates such a structure
static struct imxuart_platform_data uart1_pdata = {

.flags = IMXUART_HAVE_RTSCTS,

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 349/496

platform data Example 2/2

I The uart_pdata structure is associated to the
platform_device in the MX1ADS board file (the real code
is slightly more complicated)
struct platform_device mx1ads_uart1 = {

.name = "imx-uart",

.dev {

.platform_data = &uart1_pdata,

},

.resource = imx_uart1_resources,

[...]

};

I The driver can access the platform data:
static int serial_imx_probe(struct platform_device *pdev)

{

struct imxuart_platform_data *pdata;

pdata = pdev->dev.platform_data;

if (pdata && (pdata->flags & IMXUART_HAVE_RTSCTS))

sport->have_rtscts = 1;

[...]

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 350/496

Driver-specific Data Structure

I Each framework defines a structure that a device driver must
register to be recognized as a device in this framework

I uart_port for serial port, netdev for network devices,
fb_info for framebuffers, etc.

I In addition to this structure, the driver usually needs to store
additional information about its device

I This is typically done
I By subclassing the appropriate framework structure
I Or by storing a reference to the appropriate framework

structure

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 351/496

Driver-specific Data Structure Examples

I i.MX serial driver: imx_port is a subclass of uart_port
struct imx_port {

struct uart_port port;

struct timer_list timer;

unsigned int old_status;

int txirq, rxirq, rtsirq;

unsigned int have_rtscts:1;

[...]

};

I rtl8150 network driver: rtl8150 has a reference to
net_device
struct rtl8150 {

unsigned long flags;

struct usb_device *udev;

struct tasklet_struct tl;

struct net_device *netdev;

[...]

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 352/496

Link Between Structures 1/3

I The framework typically contains a struct device * pointer
that the driver must point to the corresponding struct device

I It’s the relation between the logical device (for example a
network interface) and the physical device (for example the
USB network adapter)

I The device structure also contains a void * pointer that the
driver can freely use.

I It’s often use to link back the device to the higher-level
structure from the framework.

I It allows, for example, from the platform_device structure,
to find the structure describing the logical device

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 353/496

Link Between Structures 2/3

static int serial_imx_probe(struct platform_device *pdev)

{

struct imx_port *sport;

[...]

/* setup the link between uart_port and the struct

* device inside the platform_device */

sport->port.dev = &pdev->dev;

[...]

/* setup the link between the struct device inside

* the platform device to the imx_port structure */

platform_set_drvdata(pdev, &sport->port);

[...]

uart_add_one_port(&imx_reg, &sport->port);

}

static int serial_imx_remove(struct platform_device *pdev)

{

/* retrieve the imx_port from the platform_device */

struct imx_port *sport = platform_get_drvdata(pdev);

[...]

uart_remove_one_port(&imx_reg, &sport->port);

[...]

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 354/496

Link Between Structures 3/3

static int rtl8150_probe(struct usb_interface *intf,

const struct usb_device_id *id)

{

rtl8150_t *dev;

struct net_device *netdev;

netdev = alloc_etherdev(sizeof(rtl8150_t));

dev = netdev_priv(netdev);

usb_set_intfdata(intf, dev);

SET_NETDEV_DEV(netdev, &intf->dev);

[...]

}

static void rtl8150_disconnect(struct usb_interface *intf)

{

rtl8150_t *dev = usb_get_intfdata(intf);

[...]

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 355/496

Example of Another Non-Dynamic Bus: SPI

I SPI is called non-dynamic as it doesn’t support runtime
enumeration of devices: the system needs to know which
devices are on which SPI bus, and at which location

I The SPI infrastructure in the kernel is in drivers/spi
I drivers/spi/spi.c is the core, which implements the

struct bus_type for spi
I It allows registration of adapter drivers using

spi_register_master(), and registration of device drivers
using spi_register_driver()

I drivers/spi/ contains many adapter drivers, for various
platforms: Atmel, OMAP, Xilinx, Samsung, etc.

I Most of them are platform_drivers or
of_platform_drivers, one pci_driver, one amba_driver,
one partport_driver

I drivers/spi/spidev.c provides an infrastructure to access
SPI bus from userspace

I SPI device drivers are present all over the kernel tree

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 356/496

SPI Components

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 357/496

SPI AT91 SoC Code: at91sam9260 devices 1/2

static struct resource spi0_resources[] = {

[0] = {

.start = AT91SAM9260_BASE_SPI0,

.end = AT91SAM9260_BASE_SPI0 + SZ_16K - 1,

.flags = IORESOURCE_MEM,

},

[1] = {

.start = AT91SAM9260_ID_SPI0,

.end = AT91SAM9260_ID_SPI0,

.flags = IORESOURCE_IRQ,

},

};

static struct platform_device at91sam9260_spi0_device = {

.name = "atmel_spi",

.id = 0,

.dev = {

.dma_mask = &spi_dmamask,

.coherent_dma_mask = DMA_BIT_MASK(32),

},

.resource = spi0_resources,

.num_resources = ARRAY_SIZE(spi0_resources),

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 358/496

SPI AT91 SoC Code: at91sam9260 devices 2/2

I Registration of SPI devices with
spi_register_board_info(), registration of SPI adapter
with platform_device_register()
void __init at91_add_device_spi(struct spi_board_info *devices,

int nr_devices)

{

[...]

spi_register_board_info(devices, nr_devices);

/* Configure SPI bus(es) */

if (enable_spi0) {

at91_set_A_periph(AT91_PIN_PA0, 0); /* SPI0_MISO */

at91_set_A_periph(AT91_PIN_PA1, 0); /* SPI0_MOSI */

at91_set_A_periph(AT91_PIN_PA2, 0); /* SPI1_SPCK */

at91_clock_associate("spi0_clk", &at91sam9260_spi0_device.dev,

"spi_clk");

platform_device_register(&at91sam9260_spi0_device);

}

[...]

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 359/496

AT91RM9200DK Board Code for SPI

I One spi_board_info structure for each SPI device
connected to the system.
static struct spi_board_info dk_spi_devices[] = {

{

/* DataFlash chip */

.modalias = "mtd_dataflash",

.chip_select = 0,

.max_speed_hz = 15 * 1000 * 1000,

},

{

/* UR6HCPS2-SP40 PS2-to-SPI adapter */

.modalias = "ur6hcps2",

.chip_select = 1,

.max_speed_hz = 250 * 1000,

},

[...]

};

static void __init dk_board_init(void)

{

[...]

at91_add_device_spi(dk_spi_devices, ARRAY_SIZE(dk_spi_devices));

[..]

}

I Taken from arch/arm/mach-at91/board-dk.c

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 360/496

References

I Kernel documentation
I Documentation/driver-model/
I Documentation/filesystems/sysfs.txt

I The kernel source code
I Full of examples of other drivers!

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 361/496

http://free-electrons.com/kerneldoc/latest/driver-model/
http://free-electrons.com/kerneldoc/latest/filesystems/sysfs.txt

Serial Drivers

Serial Drivers
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 362/496

Architecture (1)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 363/496

Architecture (2)

I To be properly integrated in a Linux system, serial ports must
be visible as TTY devices from userspace applications

I Therefore, the serial driver must be part of the kernel TTY
subsystem

I Until 2.6, serial drivers were implemented directly behind the
TTY core

I A lot of complexity was involved

I Since 2.6, a specialized TTY driver, serial_core, eases the
development of serial drivers

I See include/linux/serial_core.h for the main definitions
of the serial_core infrastructure

I The line discipline that cooks the data exchanged with the
tty driver. For normal serial ports, N_TTY is used.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 364/496

Data Structures

I A data structure representing a driver: uart_driver
I Single instance for each driver
I uart_register_driver() and uart_unregister_driver()

I A data structure representing a port: uart_port
I One instance for each port (several per driver are possible)
I uart_add_one_port() and uart_remove_one_port()

I A data structure containing the pointers to the operations:
uart_ops

I Linked from uart_port through the ops field

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 365/496

uart driver

I Usually
I Defined statically in the driver
I Registered in module_init()
I Unregistered in module_cleanup()

I Contains
I owner, usually set to THIS_MODULE
I driver_name
I dev_name, the device name prefix, usually ttyS
I major and minor

I Use TTY_MAJOR and 64 to get the normal numbers. But they
might conflict with the 8250-reserved numbers

I nr, the maximum number of ports
I cons, pointer to the console device (covered later)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 366/496

uart driver Code Example (1)

static struct uart_driver atmel_uart = {

.owner = THIS_MODULE,

.driver_name = "atmel_serial",

.dev_name = ATMEL_DEVICENAME,

.major = SERIAL_ATMEL_MAJOR,

.minor = MINOR_START,

.nr = ATMEL_MAX_UART,

.cons = ATMEL_CONSOLE_DEVICE,

};

static struct platform_driver atmel_serial_driver = {

.probe = atmel_serial_probe,

.remove = __devexit_p(atmel_serial_remove),

.suspend = atmel_serial_suspend,

.resume = atmel_serial_resume,

.driver = {

.name = "atmel_usart",

.owner = THIS_MODULE,

},

};

Example code from drivers/serial/atmel_serial.c

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 367/496

uart driver Code Example (2)

static int __init atmel_serial_init(void)

{

/* Warning: Error management removed */

uart_register_driver(&atmel_uart);

platform_driver_register(&atmel_serial_driver);

return 0;

}

static void __exit atmel_serial_exit(void)

{

platform_driver_unregister(&atmel_serial_driver);

uart_unregister_driver(&atmel_uart);

}

module_init(atmel_serial_init);

module_exit(atmel_serial_exit);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 368/496

uart port

I Can be allocated statically or dynamically

I Usually registered at probe() time and unregistered at
remove() time

I Most important fields
I iotype, type of I/O access, usually UPIO_MEM for

memory-mapped devices
I mapbase, physical address of the registers
I irq, the IRQ channel number
I membase, the virtual address of the registers
I uartclk, the clock rate
I ops, pointer to the operations
I dev, pointer to the device (platform_device or other)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 369/496

uart port Code Example (1)

static int __devinit atmel_serial_probe(struct platform_device *pdev)

{

struct atmel_uart_port *port;

port = &atmel_ports[pdev->id];

port->backup_imr = 0;

atmel_init_port(port, pdev);

uart_add_one_port(&atmel_uart, &port->uart);

platform_set_drvdata(pdev, port);

return 0;

}

static int __devexit atmel_serial_remove(struct platform_device *pdev)

{

struct uart_port *port = platform_get_drvdata(pdev);

platform_set_drvdata(pdev, NULL);

uart_remove_one_port(&atmel_uart, port);

return 0;

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 370/496

uart port Code Example (2)

static void __devinit atmel_init_port(

struct atmel_uart_port *atmel_port,

struct platform_device *pdev)

{

struct uart_port *port = &atmelt_port->uart;

struct atmel_uart_data *data = pdev->dev.platform_data;

port->iotype = UPIO_MEM;

port->flags = UPF_BOOT_AUTOCONF;

port->ops = &atmel_pops;

port->fifosize = 1;

port->line = pdev->id;

port->dev = &pdev->dev;

port->mapbase = pdev->resource[0].start;

port->irq = pdev->resource[1].start;

tasklet_init(&atmel_port->tasklet, atmel_tasklet_func,

(unsigned long)port);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 371/496

uart port Code Example (3)

if (data->regs)

/* Already mapped by setup code */

port->membase = data->regs;

else {

port->flags |= UPF_IOREMAP;

port->membase = NULL;

}

/* for console, the clock could already be configured */

if (!atmel_port->clk) {

atmel_port->clk = clk_get(&pdev->dev, "usart");

clk_enable(atmel_port->clk);

port->uartclk = clk_get_rate(atmel_port->clk);

clk_disable(atmel_port->clk);

/* only enable clock when USART is in use */

}

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 372/496

uart ops

I Important operations
I tx_empty(), tells whether the transmission FIFO is empty or

not
I set_mctrl() and get_mctrl(), allow to set and get the

modem control parameters (RTS, DTR, LOOP, etc.)
I start_tx() and stop_tx(), to start and stop the

transmission
I stop_rx(), to stop the reception
I startup() and shutdown(), called when the port is

opened/closed
I request_port() and release_port(), request/release I/O

or memory regions
I set_termios(), change port parameters

I See the detailed description in
Documentation/serial/driver

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 373/496

http://free-electrons.com/kerneldoc/latest/serial/driver

Implementing Transmission

I The start_tx() method should start transmitting characters
over the serial port

I The characters to transmit are stored in a circular buffer,
implemented by a struct uart_circ structure. It contains

I buf[], the buffer of characters
I tail, the index of the next character to transmit. After

transmit, tail must be updated using

tail = tail &(UART_XMIT_SIZE - 1)

I Utility functions on uart_circ
I uart_circ_empty(), tells whether the circular buffer is empty
I uart_circ_chars_pending(), returns the number of

characters left to transmit

I From an uart_port pointer, this structure can be reached
using port->state->xmit

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 374/496

Polled-Mode Transmission

foo_uart_putc(struct uart_port *port, unsigned char c) {

while(__raw_readl(port->membase + UART_REG1) & UART_TX_FULL)

cpu_relax();

__raw_writel(c, port->membase + UART_REG2);

}

foo_uart_start_tx(struct uart_port *port) {

struct circ_buf *xmit = &port->state->xmit;

while (!uart_circ_empty(xmit)) {

foo_uart_putc(port, xmit->buf[xmit->tail]);

xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);

port->icount.tx++;

}

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 375/496

Transmission with Interrupts (1)

foo_uart_interrupt(int irq, void *dev_id) {

[...]

if (interrupt_cause & END_OF_TRANSMISSION)

foo_uart_handle_transmit(port);

[...]

}

foo_uart_start_tx(struct uart_port *port) {

enable_interrupt_on_txrdy();

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 376/496

Transmission with Interrupts (2)

foo_uart_handle_transmit(port) {

struct circ_buf *xmit = &port->state->xmit;

if (uart_circ_empty(xmit) || uart_tx_stopped(port)) {

disable_interrupt_on_txrdy();

return;

}

while (!uart_circ_empty(xmit)) {

if (!(__raw_readl(port->membase + UART_REG1) &

UART_TX_FULL))

break;

__raw_writel(xmit->buf[xmit->tail],

port->membase + UART_REG2);

xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);

port->icount.tx++;

}

if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)

uart_write_wakeup(port);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 377/496

Reception

I On reception, usually in an interrupt handler, the driver must
I Increment port->icount.rx
I Call uart_handle_break() if a BRK has been received, and if

it returns TRUE, skip to the next character
I If an error occurred, increment port->icount.parity,

port->icount.frame, port->icount.overrun depending
on the error type

I Call uart_handle_sysrq_char() with the received character,
and if it returns TRUE, skip to the next character

I Call uart_insert_char() with the received character and a
status

I Status is TTY_NORMAL is everything is OK, or TTY_BREAK,
TTY_PARITY, TTY_FRAME in case of error

I Call tty_flip_buffer_push() to push data to the TTY layer

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 378/496

Understanding Sysrq

I Part of the reception work is dedicated to handling Sysrq
I Sysrq are special commands that can be sent to the kernel to

make it reboot, unmount filesystems, dump the task state,
nice real-time tasks, etc.

I These commands are implemented at the lowest possible level
so that even if the system is locked, you can recover it.

I Through serial port: send a BRK character, send the character
of the Sysrq command

I See Documentation/sysrq.txt

I In the driver
I uart_handle_break() saves the current time + 5 seconds in

a variable
I uart_handle_sysrq_char() will test if the current time is

below the saved time, and if so, will trigger the execution of
the Sysrq command

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 379/496

http://free-electrons.com/kerneldoc/latest/sysrq.txt

Reception Code Sample (1)

foo_receive_chars(struct uart_port *port) {

int limit = 256;

while (limit-- > 0) {

status = __raw_readl(port->membase + REG_STATUS);

ch = __raw_readl(port->membase + REG_DATA);

flag = TTY_NORMAL;

if (status & BREAK) {

port->icount.break++;

if (uart_handle_break(port))

continue;

}

else if (status & PARITY)

port->icount.parity++;

else if (status & FRAME)

port->icount.frame++;

else if (status & OVERRUN)

port->icount.overrun++;

[...]

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 380/496

Reception Code Sample (2)

[...]

status &= port->read_status_mask;

if (status & BREAK)

flag = TTY_BREAK;

else if (status & PARITY)

flag = TTY_PARITY;

else if (status & FRAME)

flag = TTY_FRAME;

if (uart_handle_sysrq_char(port, ch))

continue;

uart_insert_char(port, status, OVERRUN, ch, flag);

}

spin_unlock(& port->lock);

tty_flip_buffer_push(port->state->port.tty);

spin_lock(& port->lock);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 381/496

Modem Control Lines

I Set using the set_mctrl() operation
I The mctrl argument can be a mask of TIOCM_RTS (request to

send), TIOCM_DTR (Data Terminal Ready), TIOCM_OUT1,
TIOCM_OUT2, TIOCM_LOOP (enable loop mode)

I If a bit is set in mctrl, the signal must be driven active, if the
bit is cleared, the signal must be driven inactive

I Status using the get_mctrl() operation
I Must return read hardware status and return a combination of

TIOCM_CD (Carrier Detect), TIOCM_CTS (Clear to Send),
TIOCM_DSR (Data Set Ready) and TIOCM_RI (Ring Indicator)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 382/496

set mctrl() Example

foo_set_mctrl(struct uart_port *uart, u_int mctrl) {

unsigned int control = 0, mode = 0;

if (mctrl & TIOCM_RTS)

control |= ATMEL_US_RTSEN;

else

control |= ATMEL_US_RTSDIS;

if (mctrl & TIOCM_DTS)

control |= ATMEL_US_DTREN;

else

control |= ATMEL_US_DTRDIS;

__raw_writel(port->membase + REG_CTRL, control);

if (mctrl & TIOCM_LOOP)

mode |= ATMEL_US_CHMODE_LOC_LOOP;

else

mode |= ATMEL_US_CHMODE_NORMAL;

__raw_writel(port->membase + REG_MODE, mode);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 383/496

get mctrl() example

foo_get_mctrl(struct uart_port *uart, u_int mctrl) {

unsigned int status, ret = 0;

status = __raw_readl(port->membase + REG_STATUS);

/*

* The control signals are active low.

*/

if (!(status & ATMEL_US_DCD))

ret |= TIOCM_CD;

if (!(status & ATMEL_US_CTS))

ret |= TIOCM_CTS;

if (!(status & ATMEL_US_DSR))

ret |= TIOCM_DSR;

if (!(status & ATMEL_US_RI))

ret |= TIOCM_RI;

return ret;

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 384/496

termios

I The termios functions describe a general terminal interface
that is provided to control asynchronous communication ports

I A mechanism to control from userspace serial port parameters
such as

I Speed
I Parity
I Byte size
I Stop bit
I Hardware handshake
I Etc.

I See termios(3) for details

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 385/496

set termios()

I The set_termios() operation must
I apply configuration changes according to the arguments
I update port->read_config_mask and

port->ignore_config_mask to indicate the events we are
interested in receiving

I static void set_termios(struct uart_port *port,

struct ktermios *termios, struct ktermios *old)

I port, the port, termios, the new values and old, the old
values

I Relevant ktermios structure fields are
I c_cflag with word size, stop bits, parity, reception enable,

CTS status change reporting, enable modem status change
reporting

I c_iflag with frame and parity errors reporting, break event
reporting

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 386/496

set termios() example (1)

static void atmel_set_termios(struct uart_port *port,

struct ktermios *termios, struct ktermios *old)

{

unsigned long flags;

unsigned int mode, imr, quot, baud;

mode = __raw_readl(port->membase + REG_MODE);

baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk / 16);

/* Read current configuration */

quot = uart_get_divisor(port, baud);

/* Compute the mode modification for the byte size parameter */

switch (termios->c_cflag & CSIZE) {

case CS5:

mode |= ATMEL_US_CHRL_5;

break;

case CS6:

mode |= ATMEL_US_CHRL_6;

break;

[...]

default:

mode |= ATMEL_US_CHRL_8;

break;

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 387/496

set termios() example (2)

/* Compute the mode modification for the stop bit */

if (termios->c_cflag & CSTOPB)

mode |= ATMEL_US_NBSTOP_2;

/* Compute the mode modification for parity */

if (termios->c_cflag & PARENB) {

/* Mark or Space parity */

if (termios->c_cflag & CMSPAR) {

if (termios->c_cflag & PARODD)

mode |= ATMEL_US_PAR_MARK;

else

mode |= ATMEL_US_PAR_SPACE;

} else if (termios->c_cflag & PARODD)

mode |= ATMEL_US_PAR_ODD;

else

mode |= ATMEL_US_PAR_EVEN;

} else

mode |= ATMEL_US_PAR_NONE;

/* Compute the mode modification for CTS reporting */

if (termios->c_cflag & CRTSCTS)

mode |= ATMEL_US_USMODE_HWHS;

else

mode |= ATMEL_US_USMODE_NORMAL;

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 388/496

set termios() Example (3)

/* Compute the read_status_mask and ignore_status_mask

* according to the events we’re interested in. These

* values are used in the interrupt handler. */

port->read_status_mask = ATMEL_US_OVRE;

if (termios->c_iflag & INPCK)

port->read_status_mask |= (ATMEL_US_FRAME | ATMEL_US_PARE);

if (termios->c_iflag & (BRKINT | PARMRK))

port->read_status_mask |= ATMEL_US_RXBRK;

port->ignore_status_mask = 0;

if (termios->c_iflag & IGNPAR)

port->ignore_status_mask |= (ATMEL_US_FRAME | ATMEL_US_PARE);

if (termios->c_iflag & IGNBRK) {

port->ignore_status_mask |= ATMEL_US_RXBRK;

if (termios->c_iflag & IGNPAR)

port->ignore_status_mask |= ATMEL_US_OVRE;

}

/* The serial_core maintains a timeout that corresponds to the

* duration it takes to send the full transmit FIFO. This timeout has

* to be updated. */

uart_update_timeout(port, termios->c_cflag, baud);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 389/496

set termios() Example (4)

/* Finally, apply the mode and baud rate modifications. Interrupts,

* transmission and reception are disabled when the modifications

* are made. */

/* Save and disable interrupts */

imr = UART_GET_IMR(port);

UART_PUT_IDR(port, -1);

/* disable receiver and transmitter */

UART_PUT_CR(port, ATMEL_US_TXDIS | ATMEL_US_RXDIS);

/* set the parity, stop bits and data size */

UART_PUT_MR(port, mode);

/* set the baud rate */

UART_PUT_BRGR(port, quot);

UART_PUT_CR(port, ATMEL_US_RSTSTA | ATMEL_US_RSTRX);

UART_PUT_CR(port, ATMEL_US_TXEN | ATMEL_US_RXEN);

/* restore interrupts */

UART_PUT_IER(port, imr);

/* CTS flow-control and modem-status interrupts */

if (UART_ENABLE_MS(port, termios->c_cflag))

port->ops->enable_ms(port);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 390/496

Console

I To allows early boot messages to be printed, the kernel
provides a separate but related facility: console

I This console can be enabled using the console= kernel
argument

I The driver developer must
I Implement a console_write() operation, called to print

characters on the console
I Implement a console_setup() operation, called to parse the

console= argument
I Declare a struct console structure
I Register the console using a console_initcall() function

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 391/496

Console: Registration

static struct console serial_txx9_console = {

.name = TXX9_TTY_NAME,

.write = serial_txx9_console_write,

/* Helper function from the serial_core layer */

.device = uart_console_device,

.setup = serial_txx9_console_setup,

/* Ask for the kernel messages buffered during

* boot to be printed to the console when activated */

.flags = CON_PRINTBUFFER,

.index = -1,

.data = &serial_txx9_reg,

};

static int __init serial_txx9_console_init(void)

{

register_console(&serial_txx9_console);

return 0;

}

/* This will make sure the function is called early during the boot process.

* start_kernel() calls console_init() that calls our function */

console_initcall(serial_txx9_console_init);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 392/496

Console: Setup

static int __init serial_txx9_console_setup(struct console *co,

char *options)

{

struct uart_port *port;

struct uart_txx9_port *up;

int baud = 9600;

int bits = 8;

int parity = ’n’;

int flow = ’n’;

if (co->index >= UART_NR)

co->index = 0;

up = &serial_txx9_ports[co->index];

port = &up->port;

if (!port->ops)

return -ENODEV;

/* Function shared with the normal serial driver */

serial_txx9_initialize(&up->port);

if (options)

/* Helper function from serial_core that parses the console= string */

uart_parse_options(options, &baud, &parity, &bits, &flow);

/* Helper function from serial_core that calls the ->set_termios() */

/* operation with the proper arguments to configure the port */

return uart_set_options(port, co, baud, parity, bits, flow);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 393/496

Console: Write

static void serial_txx9_console_putchar(struct uart_port *port, int ch)

{

struct uart_txx9_port *up = (struct uart_txx9_port *)port;

/* Busy-wait for transmitter ready and output a single character. */

wait_for_xmitr(up);

sio_out(up, TXX9_SITFIFO, ch);

}

static void serial_txx9_console_write(struct console *co,

const char *s, unsigned int count)

{

struct uart_txx9_port *up = &serial_txx9_ports[co->index];

unsigned int ier, flcr;

/* Disable interrupts */

ier = sio_in(up, TXX9_SIDICR);

sio_out(up, TXX9_SIDICR, 0);

/* Disable flow control */

flcr = sio_in(up, TXX9_SIFLCR);

if (!(up->port.flags & UPF_CONS_FLOW) && (flcr & TXX9_SIFLCR_TES))

sio_out(up, TXX9_SIFLCR, flcr & ~TXX9_SIFLCR_TES);

/* Helper function from serial_core that repeatedly calls the given putchar() */

/* callback */

uart_console_write(&up->port, s, count, serial_txx9_console_putchar);

/* Re-enable interrupts */

wait_for_xmitr(up);

sio_out(up, TXX9_SIFLCR, flcr);

sio_out(up, TXX9_SIDICR, ier);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 394/496

Practical lab - Serial drivers

I Improve the character driver of the
previous labs to make it a real
serial driver

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 395/496

Kernel Initialization

Kernel
Initialization
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 396/496

From Bootloader to Userspace

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 397/496

Kernel Bootstrap (1)

How the kernel bootstraps itself appears in kernel building.
Example on ARM (pxa cpu) in Linux 2.6.36:

...

LD vmlinux

SYSMAP System.map

SYSMAP .tmp_System.map

OBJCOPY arch/arm/boot/Image

Kernel: arch/arm/boot/Image is ready

AS arch/arm/boot/compressed/head.o

GZIP arch/arm/boot/compressed/piggy.gzip

AS arch/arm/boot/compressed/piggy.gzip.o

CC arch/arm/boot/compressed/misc.o

CC arch/arm/boot/compressed/decompress.o

AS arch/arm/boot/compressed/head-xscale.o

SHIPPED arch/arm/boot/compressed/lib1funcs.S

AS arch/arm/boot/compressed/lib1funcs.o

LD arch/arm/boot/compressed/vmlinux

OBJCOPY arch/arm/boot/zImage

Kernel: arch/arm/boot/zImage is ready

...

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 398/496

Kernel Bootstrap (2)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 399/496

Bootstrap Code for Compressed Kernels

I Located in arch/<arch>/boot/compressed
I head.o

I Architecture specific initialization code.
I This is what is executed by the bootloader

I head-cpu.o (here head-xscale.o)
I CPU specific initialization code

I decompress.o, misc.o
I Decompression code

I piggy.<compressionformat>.o
I The kernel itself

I Responsible for uncompressing the kernel itself and jumping to
its entry point.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 400/496

Architecture-specific Initialization Code

I The uncompression code jumps into the main kernel entry
point, typically located in arch/<arch>/kernel/head.S,
whose job is to:

I Check the architecture, processor and machine type.
I Configure the MMU, create page table entries and enable

virtual memory.
I Calls the start_kernel function in init/main.c.
I Same code for all architectures.
I Anybody interested in kernel startup should study this file!

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 401/496

start kernel Main Actions

I Calls setup_arch(&command_line)
I Function defined in arch/<arch>/kernel/setup.c
I Copying the command line from where the bootloader left it.
I On arm, this function calls setup_processor (in which CPU

information is displayed) and setup_machine(locating the
machine in the list of supported machines).

I Initializes the console as early as possible (to get error
messages)

I Initializes many subsystems (see the code)

I Eventually calls rest_init.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 402/496

rest init: Starting the Init Process

static noinline void __init_refok rest_init(void)

__releases(kernel_lock)

{

int pid;

rcu_scheduler_starting();

/*

* We need to spawn init first so that it obtains pid 1, however

* the init task will end up wanting to create kthreads, which, if

* we schedule it before we create kthreadd, will OOPS.

*/

kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);

numa_default_policy();

pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);

rcu_read_lock();

kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);

rcu_read_unlock();

complete(&kthreadd_done);

/*

* The boot idle thread must execute schedule()

* at least once to get things moving:

*/

init_idle_bootup_task(current);

preempt_enable_no_resched();

schedule();

preempt_disable();

/* Call into cpu_idle with preempt disabled */

cpu_idle();

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 403/496

kernel init

I kernel_init does two main things:
I Call do_basic_setup
I Once kernel services are ready, start device initialization (Linux

2.6.36 code excerpt):

static void __init do_basic_setup(void)

{

cpuset_init_smp();

usermodehelper_init();

init_tmpfs();

driver_init();

init_irq_proc();

do_ctors();

do_initcalls();

}

I Call init_post

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 404/496

do initcalls

Calls pluggable hooks registered with the macros below.
Advantage: the generic code doesn’t have to know about them.

/*

* A "pure" initcall has no dependencies on anything else, and purely

* initializes variables that couldn’t be statically initialized.

*

* This only exists for built-in code, not for modules.

*/

#define pure_initcall(fn) __define_initcall("0",fn,1)

#define core_initcall(fn) __define_initcall("1",fn,1)

#define core_initcall_sync(fn) __define_initcall("1s",fn,1s)

#define postcore_initcall(fn) __define_initcall("2",fn,2)

#define postcore_initcall_sync(fn) __define_initcall("2s",fn,2s)

#define arch_initcall(fn) __define_initcall("3",fn,3)

#define arch_initcall_sync(fn) __define_initcall("3s",fn,3s)

#define subsys_initcall(fn) __define_initcall("4",fn,4)

#define subsys_initcall_sync(fn) __define_initcall("4s",fn,4s)

#define fs_initcall(fn) __define_initcall("5",fn,5)

#define fs_initcall_sync(fn) __define_initcall("5s",fn,5s)

#define rootfs_initcall(fn) __define_initcall("rootfs",fn,rootfs)

#define device_initcall(fn) __define_initcall("6",fn,6)

#define device_initcall_sync(fn) __define_initcall("6s",fn,6s)

#define late_initcall(fn) __define_initcall("7",fn,7)

#define late_initcall_sync(fn) __define_initcall("7s",fn,7s)

Defined in include/linux/init.h

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 405/496

initcall example

From arch/arm/mach-pxa/lpd270.c (Linux 2.6.36)
static int __init lpd270_irq_device_init(void)

{

int ret = -ENODEV;

if (machine_is_logicpd_pxa270()) {

ret = sysdev_class_register(&lpd270_irq_sysclass);

if (ret == 0)

ret = sysdev_register(&lpd270_irq_device);

}

return ret;

}

device_initcall(lpd270_irq_device_init);

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 406/496

init post

I The last step of Linux booting
I First tries to open a console
I Then tries to run the init process, effectively turning the

current kernel thread into the userspace init process.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 407/496

init post Code: init/main.c

static noinline int init_post(void) __releases(kernel_lock) {

/* need to finish all async __init code before freeing the memory */

async_synchronize_full();

free_initmem();

mark_rodata_ro();

system_state = SYSTEM_RUNNING;

numa_default_policy();

current->signal->flags |= SIGNAL_UNKILLABLE;

if (ramdisk_execute_command) {

run_init_process(ramdisk_execute_command);

printk(KERN_WARNING "Failed to execute %s\n", ramdisk_execute_command);

}

/* We try each of these until one succeeds.

* The Bourne shell can be used instead of init if we are

* trying to recover a really broken machine. */

if (execute_command) {

run_init_process(execute_command);

printk(KERN_WARNING "Failed to execute %s. Attempting defaults...\n", execute_command);

}

run_init_process("/sbin/init");

run_init_process("/etc/init");

run_init_process("/bin/init");

run_init_process("/bin/sh");

panic("No init found. Try passing init= option to kernel. See Linux Documentation/init.txt");

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 408/496

Kernel Initialization Graph

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 409/496

Kernel Initialization - Summary

I The bootloader executes bootstrap code.

I Bootstrap code initializes the processor and board, and
uncompresses the kernel code to RAM, and calls the kernel’s
start_kernel function.

I Copies the command line from the bootloader.

I Identifies the processor and machine.

I Initializes the console.

I Initializes kernel services (memory allocation, scheduling, file
cache...)

I Creates a new kernel thread (future init process) and
continues in the idle loop.

I Initializes devices and execute initcalls.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 410/496

Porting the Linux Kernel to an ARM Board

Porting the Linux
Kernel to an ARM
Board
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 411/496

Porting the Linux kernel

I The Linux kernel supports a lot of different CPU architectures
I Each of them is maintained by a different group of

contributors
I See the MAINTAINERS file for details

I The organization of the source code and the methods to port
the Linux kernel to a new board are therefore very
architecture-dependent

I For example, PowerPC and ARM are very different
I PowerPC relies on device trees to describe hardware details
I ARM relies on source code only, but the migration to device

tree is in progress

I This presentation is focused on the ARM architecture only

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 412/496

Architecture, CPU and Machine

I In the source tree, each architecture has its own directory
I arch/arm for the ARM architecture

I This directory contains generic ARM code
I boot, common, configs, kernel, lib, mm, nwfpe, vfp,

oprofile, tools

I And many directories for different SoC families
I mach-* directories: mach-pxa for PXA CPUs, mach-imx for

Freescale iMX CPUs, etc.
I Each of these directories contain

I Support for the SoC family (GPIO, clocks, pinmux, power
management, interrupt controller, etc.)

I Support for several boards using this SoC

I Some CPU types share some code, in directories named
plat-*

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 413/496

Source Code for Calao USB A9263

I Taking the case of the Calao USB A9263 board, which uses a
AT91SAM9263 CPU.

I arch/arm/mach-at91
I AT91 generic code

I clock.c
I leds.c
I irq.c
I pm.c

I CPU-specific code for the AT91SAM9263
I at91sam9263.c
I at91sam926x_time.c
I at91sam9263_devices.c

I Board specific code
I board-usb-a9263.c

I For the rest of this presentation, we will focus on board
support only

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 414/496

Configuration

I A configuration option must be defined for the board, in
arch/arm/mach-at91/Kconfig
config MACH_USB_A9263

bool "CALAO USB-A9263"

depends on ARCH_AT91SAM9263

help

Select this if you are using a Calao Systems USB-A9263.

<http://www.calao-systems.com>

I This option must depend on the CPU type option
corresponding to the CPU used in the board

I Here the option is ARCH_AT91SAM9263, defined in the same file

I A default configuration file for the board can optionally be
stored in arch/arm/configs/. For our board, it’s
at91sam9263_defconfig

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 415/496

Compilation

I The source files corresponding to the board support must be
associated with the configuration option of the board

obj-$(CONFIG_MACH_USB_A9263) += board-usb-a9263.o

I This is done in arch/arm/mach-at91/Makefile

obj-y := irq.o gpio.o

obj-$(CONFIG_AT91_PMC_UNIT) += clock.o

obj-y += leds.o

obj-$(CONFIG_PM) += pm.o

obj-$(CONFIG_AT91_SLOW_CLOCK) += pm_slowclock.o

I The Makefile also tells which files are compiled for every AT91
CPU

I And which files for our particular CPU, the AT91SAM9263

obj-$(CONFIG_ARCH_AT91SAM9263) += at91sam9263.o

at91sam926x_time.o at91sam9263_devices.o sam9_smc.o

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 416/496

Machine Structure

I Each board is defined by a machine structure
I The word machine is quite confusing since every mach-*

directory contains several machine definitions, one for each
board using a given CPU type

I For the Calao board, at the end of
arch/arm/mach-at91/board-usb-a926x.c

MACHINE_START(USB_A9263, "CALAO USB_A9263")

/* Maintainer: calao-systems */

.phys_io = AT91_BASE_SYS,

.io_pg_offst = (AT91_VA_BASE_SYS >> 18) & 0xfffc,

.boot_params = AT91_SDRAM_BASE + 0x100,

.timer = &at91sam926x_timer,

.map_io = ek_map_io,

.init_irq = ek_init_irq,

.init_machine = ek_board_init,

MACHINE_END

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 417/496

Machine Structure Macros

I MACHINE_START and MACHINE_END
I Macros defined in arch/arm/include/asm/mach/arch.h
I They are helpers to define a struct machine_desc structure

stored in a specific ELF section
I Several machine_desc structures can be defined in a kernel,

which means that the kernel can support several boards.
I The right structure is chosen at boot time

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 418/496

Machine Type Number

I In the ARM architecture, each board type is identified by a
machine type number

I The latest machine type numbers list can be found at
http://www.arm.linux.org.uk/developer/machines/

download.php

I A copy of it exists in the kernel tree in
arch/arm/tools/mach-types

I For the Calao board
I usb_a9263 MACH_USB_A9263 USB_A9263 1710

I At compile time, this file is processed to generate a header
file, include/asm-arm/mach-types.h

I For the Calao board
I #define MACH_TYPE_USB_A9263 1710

I And a few other macros in the same file

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 419/496

http://www.arm.linux.org.uk/developer/machines/download.php
http://www.arm.linux.org.uk/developer/machines/download.php

Machine Type Number

I The machine type number is set in the MACHINE_START()
definition

I MACHINE_START(USB_A9263, "CALAO USB_A9263")

I At run time, the machine type number of the board on which
the kernel is running is passed by the bootloader in register r1

I Very early in the boot process (arch/arm/kernel/head.S),
the kernel calls __lookup_machine_type in
arch/arm/kernel/head-common.S

I __lookup_machine_type looks at all the machine_desc
structures of the special ELF section

I If it doesn’t find the requested number, prints a message and
stops

I If found, it knows the machine descriptions and continues the
boot process

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 420/496

Early Debugging and Boot Parameters

I Early debugging
I phys_io is the physical address of the I/O space
I io_pg_offset is the offset in the page table to remap the I/O

space
I These are used when CONFIG_DEBUG_LL is enabled to provide

very early debugging messages on the serial port

I Boot parameters
I boot_params is the location where the bootloader has left the

boot parameters (the kernel command line)
I The bootloader can override this address in register r2
I See also Documentation/arm/Booting for the details of the

environment expected by the kernel when booted

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 421/496

http://free-electrons.com/kerneldoc/latest/arm/Booting

System Timer

I The timer field points to a struct sys_timer structure,
that describes the system timer

I Used to generate the periodic tick at HZ frequency to call the
scheduler periodically

I On the Calao board, the system timer is defined by the
at91sam926x_timer structure in at91sam926x_time.c

I It contains the interrupt handler called at HZ frequency
I It is integrated with the clockevents and the clocksource

infrastructures
I See include/linux/clocksource.h and

include/linux/clockchips.h for details

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 422/496

map io()

I The map_io() function points to ek_map_io(), which
I Initializes the CPU using at91sam9263_initialize()

I Map I/O space
I Register and initialize the clocks

I Configures the debug serial port and set the console to be on
this serial port

I Called at the very beginning of the C code execution
I init/main.c: start_kernel()
I arch/arm/kernel/setup.c: setup_arch()
I arch/arm/mm/mmu.c: paging_init()
I arch/arm/mm/mmu.c: devicemaps_init()
I mdesc->map_io()

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 423/496

init irq()

I init_irq() to initialize the IRQ hardware specific details
I Implemented by ek_init_irq(), which calls

at91sam9263_init_interrupts() in at91sam9263.c,
which mainly calls at91_aic_init() in irq.c

I Initialize the interrupt controller, assign the priorities
I Register the IRQ chip (irq_chip structure) to the kernel

generic IRQ infrastructure, so that the kernel knows how to
ack, mask, unmask the IRQs

I Called a little bit later than map_io()
I init/main.c: start_kernel()
I arch/arm/kernel/irq.c: init_IRQ()
I init_arch_irq() (equal to mdesc->init_irq)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 424/496

init machine()

I init_machine() completes the initialization of the board by
registering all platform devices

I Called by customize_machines() in
arch/arm/kernel/setup.c

I This function is an arch_initcall (list of functions whose
address is stored in a specific ELF section, by levels)

I At the end of kernel initialization, just before running the first
userspace program init:

I init/main.c: kernel_init()
I init/main.c: do_basic_setup()
I init/main.c: do_initcalls()
I Calls all initcalls, level by level

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 425/496

init machine() for Calao

I For the Calao board, implemented in ek_board_init()
I Registers serial ports, USB host, USB device, SPI, Ethernet,

NAND flash, 2IC, buttons and LEDs
I Uses at91_add_device_*() helpers, defined in

at91sam9263_devices.c
I These helpers call platform_device_register() to register

the different platform_device structures defined in the same
file

I For some devices, the board specific code does the registration
itself (buttons) or passes board-specific data to the registration
helper (USB host and device, NAND, Ethernet, etc.)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 426/496

Drivers

I The at91sam9263_devices.c file doesn’t implement the
drivers for the platform devices

I The drivers are implemented at different places of the kernel
tree

I For the Calao board
I USB host, driver at91_ohci,

drivers/usb/host/ohci-at91.c
I USB device, driver at91_udc,

drivers/usb/gadget/at91_udc.c
I Ethernet, driver macb, drivers/net/macb.c
I NAND, driver atmel_nand,

drivers/mtd/nand/atmel_nand.c
I I2C on GPIO, driver i2c-gpio,

drivers/i2c/busses/i2c-gpio.c
I SPI, driver atmel_spi, drivers/spi/atmel_spi.c
I Buttons, driver gpio-keys,

drivers/input/keyboard/gpio_keys.c

I All these drivers are selected by the default configuration file
Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 427/496

New Directions in the ARM Architecture

I The ARM architecture is migrating to the device tree
I The Device Tree is a data structure for describing hardware
I Instead of describing the hardware in C, a special data

structure, external to the kernel is used
I Allows to more easily port the kernel to newer platforms and to

make a single kernel image support multiple platforms

I The ARM architecture is being consolidated
I The clock API is being converted to a proper framework, with

drivers in drivers/clk
I The GPIO support is being converted as proper GPIO drivers

in drivers/gpio
I The pin muxing support is being converted as drivers in

drivers/pinctrl

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 428/496

Board Device Tree Example: tegra-harmony.dts

/dts-v1/;

/memreserve/ 0x1c000000 0x04000000;

/include/ "tegra20.dtsi"

/ {

model = "NVIDIA Tegra2 Harmony evaluation board";

compatible = "nvidia,harmony", "nvidia,tegra20";

chosen {

bootargs = "vmalloc=192M video=tegrafb console=ttyS0,115200n8";

};

memory@0 {

reg = < 0x00000000 0x40000000 >;

};

i2c@7000c000 {

clock-frequency = <400000>;

codec: wm8903@1a {

compatible = "wlf,wm8903";

reg = <0x1a>;

interrupts = < 347 >;

gpio-controller;

#gpio-cells = <2>;

/* 0x8000 = Not configured */

gpio-cfg = < 0x8000 0x8000 0 0x8000 0x8000 >;

};

};

[...]

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 429/496

Device Tree Usage

I The device tree source (.dts) is compiled into a device tree
blob (.dtb) using a device tree compiler (.dtc)

I The dtb is an efficient binary data structure
I The dtb is either appended to the kernel image, or better,

passed by the bootloader to the kernel

I At runtime, the kernel parses the device tree to find out
I which devices are present
I what drivers are needed
I which parameters should be used to initialize the devices

I On ARM, device tree support is only beginning

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 430/496

Porting to a New Board: Advise

I Porting Linux to a new board is easy, when Linux already
supports the evaluation kit / development board for your CPU.

I Most work has already been done and it is just a matter of
customizing devices instantiated on your boards and their
settings.

I Therefore, look for how the development board is supported,
or at least for a similar board with the same CPU.

I For example, review the (few) differences between the Calao
qil-a9260 board and Atmel’s sam9260 Evaluation Kit:

I meld board-sam9260ek.c board-qil-a9260.c

I Similarly, you will find very few differences in U-boot between
code for a board and for the corresponding evaluation board.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 431/496

Power Management

Power
Management
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 432/496

PM Building Blocks

I Several power management building blocks
I Suspend and resume
I CPUidle
I Runtime power management
I Frequency and voltage scaling
I Applications

I Independent building blocks that can be improved gradually
during development

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 433/496

Clock Framework (1)

I Generic framework to manage clocks used by devices in the
system

I Allows to reference count clock users and to shutdown the
unused clocks to save power

I Simple API described in http://free-electrons.com/
kerneldoc/latest/DocBook/kernel-api/clk.html

I clk_get() to get a reference to a clock
I clk_enable() to start the clock
I clk_disable() to stop the clock
I clk_put() to free the clock source
I clk_get_rate() to get the current rate

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 434/496

http://free-electrons.com/kerneldoc/latest/DocBook/kernel-api/clk.html
http://free-electrons.com/kerneldoc/latest/DocBook/kernel-api/clk.html

Clock Framework (2)

I The clock framework API and the clk structure are usually
implemented by each architecture (code duplication!)

I See arch/arm/mach-at91/clock.c for an example
I This is also where all clocks are defined.
I Clocks are identified by a name string specific to a given

platform

I Drivers can then use the clock API. Example from
drivers/net/macb.c:

I clk_get() called from the probe() function, to get the
definition of a clock for the current board, get its frequency,
and run clk_enable().

I clk_put() called from the remove() function to release the
reference to the clock, after calling clk_disable()

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 435/496

Clock Disable Implementation

From arch/arm/mach-at91/clock.c: (2.6.36)

static void __clk_disable(struct clk *clk)

{

BUG_ON(clk->users == 0);

if (--clk->users == 0 && clk->mode)

/* Call the hardware function switching off this clock */

clk->mode(clk, 0);

if (clk->parent)

__clk_disable(clk->parent);

}

[...]

static void pmc_sys_mode(struct clk *clk, int is_on)

{

if (is_on)

at91_sys_write(AT91_PMC_SCER, clk->pmc_mask);

else

at91_sys_write(AT91_PMC_SCDR, clk->pmc_mask);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 436/496

Suspend and Resume

I Infrastructure in the kernel to support suspend and resume
I Platform hooks

I prepare(), enter(), finish(), valid() in a
platform_suspend_ops structure

I Registered using the suspend_set_ops() function
I See arch/arm/mach-at91/pm.c

I Device drivers
I suspend() and resume() hooks in the *_driver structures

(platform_driver, usb_driver, etc.)
I See drivers/net/macb.c

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 437/496

Board-specific Power Management

I Typically takes care of battery and charging management.

I Also defines presuspend and postsuspend handlers.

I Example: arch/arm/mach-pxa/spitz_pm.c

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 438/496

arch/arm/mach-cpu/sleep.S

I Assembly code implementing CPU specific suspend and
resume code.

I Note: only found on arm, just 3 other occurrences in other
architectures, with other paths.

I First scenario: only a suspend function. The code goes in
sleep state (after enabling DRAM self-refresh), and continues
with resume code.

I Second scenario: suspend and resume functions. Resume
functions called by the bootloader.

I Examples to look at:
I arch/arm/mach-omap2/sleep24xx.S (1st case)
I arch/arm/mach-pxa/sleep.S (2nd case)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 439/496

Triggering Suspend

I Whatever the power management implementation, CPU
specific suspend_ops functions are called by the
enter_state function.

I enter_state also takes care of executing the suspend and
resume functions for your devices.

I The execution of this function can be triggered from
userspace. To suspend to RAM:

I echo mem > /sys/power/state

I Can also use the s2ram program from
http://suspend.sourceforge.net/

I Read kernel/power/suspend.c

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 440/496

http://suspend.sourceforge.net/

Runtime Power Management

I According to the kernel configuration interface: Enable
functionality allowing I/O devices to be put into energy-saving
(low power) states at run time (or autosuspended) after a
specified period of inactivity and woken up in response to a
hardware-generated wake-up event or a driver’s request.

I New hooks must be added to the drivers:
runtime_suspend(), runtime_resume(), runtime_idle()

I API and details on
Documentation/power/runtime_pm.txt

I See also Kevin Hilman’s presentation at ELC Europe 2010:
http://elinux.org/images/c/cd/ELC-2010-khilman-

Runtime-PM.odp

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 441/496

http://free-electrons.com/kerneldoc/latest/power/runtime_pm.txt
http://elinux.org/images/c/cd/ELC-2010-khilman-Runtime-PM.odp
http://elinux.org/images/c/cd/ELC-2010-khilman-Runtime-PM.odp

Saving Power in the Idle Loop

I The idle loop is what you run when there’s nothing left to run
in the system.

I Implemented in all architectures in
arch/<arch>/kernel/process.c

I Example to read: look for cpu_idle in
arch/arm/kernel/process.c

I Each ARM cpu defines its own arch_idle function.

I The CPU can run power saving HLT instructions, enter NAP
mode, and even disable the timers (tickless systems).

I See also http://en.wikipedia.org/wiki/Idle_loop

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 442/496

http://en.wikipedia.org/wiki/Idle_loop

Managing Idle

I Adding support for multiple idle levels
I Modern CPUs have several sleep states offering different power

savings with associated wake up latencies
I Since 2.6.21, the dynamic tick feature allows to remove the

periodic tick to save power, and to know when the next event
is scheduled, for smarter sleeps.

I CPUidle infrastructure to change sleep states
I Platform-specific driver defining sleep states and transition

operations
I Platform-independent governors (ladder and menu)
I Available for x86/ACPI, not supported yet by all ARM cpus.

(look for cpuidle* files under arch/arm/)
I See Documentation/cpuidle/ in kernel sources.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 443/496

http://free-electrons.com/kerneldoc/latest/cpuidle/

PowerTOP

I http://www.lesswatts.org/projects/powertop/
I With dynamic ticks, allows to fix parts of kernel code and

applications that wake up the system too often.
I PowerTOP allows to track the worst offenders
I Now available on ARM cpus implementing CPUidle
I Also gives you useful hints for reducing power.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 444/496

http://www.lesswatts.org/projects/powertop/

Frequency and Voltage Scaling (1)

I Frequency and voltage scaling possible through the cpufreq
kernel infrastructure.

I Generic infrastructure: drivers/cpufreq/cpufreq.c and
include/linux/cpufreq.h

I Generic governors, responsible for deciding frequency and
voltage transitions

I performance: maximum frequency
I powersave: minimum frequency
I ondemand: measures CPU consumption to adjust frequency
I conservative: often better than ondemand. Only increases

frequency gradually when the CPU gets loaded.
I userspace: leaves the decision to a userspace daemon.

I This infrastructure can be controlled from
/sys/devices/system/cpu/cpu<n>/cpufreq/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 445/496

Frequency and Voltage Scaling (2)

I CPU support code in architecture dependent files. Example to
read: arch/arm/plat-omap/cpu-omap.c

I Must implement the operations of the cpufreq_driver
structure and register them using
cpufreq_register_driver()

I init() for initialization
I exit() for cleanup
I verify() to verify the user-chosen policy
I setpolicy() or target() to actually perform the frequency

change

I See Documentation/cpu-freq/ for useful explanations

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 446/496

http://free-electrons.com/kerneldoc/latest/cpu-freq/

PM QoS

I PM QoS is a framework developed by Intel introduced in
2.6.25

I It allows kernel code and applications to set their
requirements in terms of

I CPU DMA latency
I Network latency
I Network throughput

I According to these requirements, PM QoS allows kernel
drivers to adjust their power management

I See Documentation/power/pm_qos_interface.txt and
Mark Gross’ presentation at ELC 2008

I Still in very early deployment (only 4 drivers in 2.6.36).

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 447/496

http://free-electrons.com/kerneldoc/latest/power/pm_qos_interface.txt

Regulator Framework

I Modern embedded hardware have hardware responsible for
voltage and current regulation

I The regulator framework allows to take advantage of this
hardware to save power when parts of the system are unused

I A consumer interface for device drivers (i.e users)
I Regulator driver interface for regulator drivers
I Machine interface for board configuration
I sysfs interface for userspace

I Merged in Linux 2.6.27.

I See Documentation/power/regulator/ in kernel sources.

I See Liam Girdwood’s presentation at ELC 2008
http://free-electrons.com/blog/elc-2008-

report#girdwood

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 448/496

http://free-electrons.com/kerneldoc/latest/power/regulator/
http://free-electrons.com/blog/elc-2008-report#girdwood
http://free-electrons.com/blog/elc-2008-report#girdwood

BSP Work for a New Board

I In case you just need to create a BSP for your board, and your
CPU already has full PM support, you should just need to:

I Create clock definitions and bind your devices to them.
I Implement PM handlers (suspend, resume) in the drivers for

your board specific devices.
I Implement runtime PM handlers in your drivers.
I Implement board specific power management if needed (mainly

battery management)
I Implement regulator framework hooks for your board if needed.
I All other parts of the PM infrastructure should be already

there: suspend / resume, cpuidle, cpu frequency and voltage
scaling.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 449/496

Useful Resources

I Documentation/power/ in the Linux kernel sources.
I Will give you many useful details.

I http://lesswatts.org
I Intel effort trying to create a Linux power saving community.
I Mainly targets Intel processors.
I Lots of useful resources.

I http:
//wiki.linaro.org/WorkingGroups/PowerManagement/

I Ongoing developments on the ARM platform.

I Tips and ideas for prolonging battery life
I http://j.mp/fVdxKh

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 450/496

http://free-electrons.com/kerneldoc/latest/power/
http://lesswatts.org
http://wiki.linaro.org/WorkingGroups/PowerManagement/
http://wiki.linaro.org/WorkingGroups/PowerManagement/
http://j.mp/fVdxKh

Practical lab - Power Management

I Suspend and resume your Linux
system

I Change the CPU frequency of your
system

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 451/496

Kernel Advice and Resources

Kernel Advice and
Resources
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 452/496

Kernel Advice and Resources

Advice

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 453/496

Solving Issues

I If you face an issue, and it doesn’t look specific to your work
but rather to the tools you are using, it is very likely that
someone else already faced it.

I Search the Internet for similar error reports.

I You have great chances of finding a solution or workaround, or
at least an explanation for your issue.

I Otherwise, reporting the issue is up to you!

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 454/496

Getting Help

I If you have a support contract, ask your vendor.
I Otherwise, don’t hesitate to share your questions and issues

I Either contact the Linux mailing list for your architecture (like
linux-arm-kernel or linuxsh-dev...).

I Or contact the mailing list for the subsystem you’re dealing
with (linux-usb-devel, linux-mtd...). Don’t ask the maintainer
directly!

I Most mailing lists come with a FAQ page. Make sure you read
it before contacting the mailing list.

I Useful IRC resources are available too (for example on
http://kernelnewbies.org).

I Refrain from contacting the Linux Kernel mailing list, unless
you’re an experienced developer and need advice.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 455/496

http://kernelnewbies.org

Reporting Linux Bugs

I First make sure you’re using the latest version

I Make sure you investigate the issue as much as you can: see
Documentation/BUG-HUNTING

I Check for previous bugs reports. Use web search engines,
accessing public mailing list archives.

I If the subsystem you report a bug on has a mailing list, use it.
Otherwise, contact the official maintainer (see the
MAINTAINERS file). Always give as many useful details as
possible.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 456/496

http://free-electrons.com/kerneldoc/latest/BUG-HUNTING

How to Become a Kernel Developer?

I Recommended resources
I See Documentation/SubmittingPatches for guidelines and

http://kernelnewbies.org/UpstreamMerge for very
helpful advice to have your changes merged upstream (by Rik
van Riel).

I Watch the Write and Submit your first Linux kernel Patch talk
by Greg. K.H:
http://www.youtube.com/watch?v=LLBrBBImJt4

I How to Participate in the Linux Community (by Jonathan
Corbet) A Guide To The Kernel Development Process
http://j.mp/tX2Ld6

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 457/496

http://free-electrons.com/kerneldoc/latest/SubmittingPatches
http://kernelnewbies.org/UpstreamMerge
http://www.youtube.com/watch?v=LLBrBBImJt4
http://j.mp/tX2Ld6

How to Submit Patches or Drivers

I Use git to prepare make your changes

I Don’t merge patches addressing different issues

I Make sure that your changes compile well, and if possible, run
well.

I Run Linux patch checks: scripts/checkpatch.pl

I Send the patches to yourself first, as an inline attachment.
This is required to let people reply to parts of your patches.
Make sure your patches still applies. See
Documentation/email-clients.txt for help configuring
e-mail clients. Best to use git send-email, which never
corrupts patches.

I Run scripts/get_maintainer.pl on your patches, to know
who you should send them to.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 458/496

http://free-electrons.com/kerneldoc/latest/email-clients.txt

Kernel Advice and Resources

References

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 459/496

Kernel Development News

I Linux Weekly News
I http://lwn.net/
I The weekly digest off all Linux and free software information

sources
I In depth technical discussions about the kernel
I Subscribe to finance the editors ($7 / month)
I Articles available for non subscribers after 1 week.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 460/496

http://lwn.net/

Useful Reading (1)

I Essential Linux Device Drivers, April 2008
I http://free-electrons.com/

redirect/eldd-book.html
I By Sreekrishnan Venkateswaran, an

embedded IBM engineer with more than
10 years of experience

I Covers a wide range of topics not
covered by LDD: serial drivers, input
drivers, I2C, PCMCIA and Compact
Flash, PCI, USB, video drivers, audio
drivers, block drivers, network drivers,
Bluetooth, IrDA, MTD, drivers in
userspace, kernel debugging, etc.

I Probably the most wide ranging and
complete Linux device driver book I’ve
read – Alan Cox

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 461/496

http://free-electrons.com/redirect/eldd-book.html
http://free-electrons.com/redirect/eldd-book.html

Useful Reading (2)

I Writing Linux Device drivers, September
2009

I http://www.coopj.com/
I Self published by Jerry Cooperstein
I Available like any other book (Amazon

and others)
I Though not as thorough as the previous

book on specific drivers, still a good
complement on multiple aspects of
kernel and device driver development.

I Based on Linux 2.6.31
I Multiple exercises. Updated solutions for

2.6.36.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 462/496

http://www.coopj.com/

Useful Reading (3)

I Linux Device Drivers, 3rd edition, Feb
2005

I http://www.oreilly.com/catalog/

linuxdrive3/
I By Jonathan Corbet, Alessandro Rubini,

Greg Kroah-Hartman, O’Reilly
I Freely available on-line! Great

companion to the printed book for easy
electronic searches!

I http://lwn.net/Kernel/LDD3/ (1
PDF file per chapter)

I http://free-electrons.com/

community/kernel/ldd3/ (single PDF
file)

I Getting outdated but still useful for
Linux device driver writers!

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 463/496

http://www.oreilly.com/catalog/linuxdrive3/
http://www.oreilly.com/catalog/linuxdrive3/
http://lwn.net/Kernel/LDD3/
http://free-electrons.com/community/kernel/ldd3/
http://free-electrons.com/community/kernel/ldd3/

Useful Reading (4)

I Linux Kernel Development, 3rd Edition,
Jun 2010

I Robert Love, Novell Press
I http://free-electrons.com/redir/

lkd3-book.html
I A very synthetic and pleasant way to

learn about kernel subsystems (beyond
the needs of device driver writers)

I The Linux Programming Interface, Oct
2010

I Michael Kerrisk, No Starch Press
I http://man7.org/tlpi/
I A gold mine about the kernel interface

and how to use it

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 464/496

http://free-electrons.com/redir/lkd3-book.html
http://free-electrons.com/redir/lkd3-book.html
http://man7.org/tlpi/

Useful Online Resources

I Kernel documentation (Documentation/ in kernel sources)
I Available on line:

http://free-electrons.com/kerneldoc/ (with HTML
documentation extracted from source code)

I Linux kernel mailing list FAQ
I http://www.tux.org/lkml/
I Complete Linux kernel FAQ
I Read this before asking a question to the mailing list

I Kernel Newbies
I http://kernelnewbies.org/
I Glossary, articles, presentations, HOWTOs, recommended

reading, useful tools for people getting familiar with Linux
kernel or driver development.

I Kernel glossary
I http://kernelnewbies.org/KernelGlossary

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 465/496

http://free-electrons.com/kerneldoc/
http://www.tux.org/lkml/
http://kernelnewbies.org/
http://kernelnewbies.org/KernelGlossary

International Conferences

I Embedded Linux Conference:
http://embeddedlinuxconference.com/

I Organized by the CE Linux Forum:
I in California (San Francisco, April)
I in Europe (October-November)
I Very interesting kernel and userspace topics for embedded

systems developers.
I Presentation slides freely available

I Linux Plumbers: http://linuxplumbersconf.org
I Conference on the low-level plumbing of Linux: kernel, audio,

power management, device management, multimedia, etc.

I linux.conf.au: http://linux.org.au/conf/
I In Australia / New Zealand
I Features a few presentations by key kernel hackers.

I Don’t miss our free conference videos on http://free-

electrons.com/community/videos/conferences/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 466/496

http://embeddedlinuxconference.com/
http://linuxplumbersconf.org
http://linux.org.au/conf/
http://free-electrons.com/community/videos/conferences/
http://free-electrons.com/community/videos/conferences/

ARM resources

I ARM Linux project: http://www.arm.linux.org.uk/
I Developer documentation:

http://www.arm.linux.org.uk/developer/
I linux-arm-kernel mailing list:

http://lists.infradead.org/mailman/listinfo/linux-

arm-kernel
I FAQ:

http://www.arm.linux.org.uk/armlinux/mlfaq.php

I Linaro: http://linaro.org
I Many optimizations and resources for recent ARM CPUs

(toolchains, kernels, debugging utilities...).

I ARM Limited: http://www.linux-arm.com/
I Wiki with links to useful developer resources

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 467/496

http://www.arm.linux.org.uk/
http://www.arm.linux.org.uk/developer/
http://lists.infradead.org/mailman/listinfo/linux-arm-kernel
http://lists.infradead.org/mailman/listinfo/linux-arm-kernel
http://www.arm.linux.org.uk/armlinux/mlfaq.php
http://linaro.org
http://www.linux-arm.com/

Introduction to Git

Introduction to Git
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 468/496

What is Git?

I A version control system, like CVS, SVN, Perforce or
ClearCase

I Originally developed for the Linux kernel development, now
used by a large number of projects, including U-Boot,
GNOME, Buildroot, uClibc and many more

I Contrary to CVS or SVN, Git is a distributed version control
system

I No central repository
I Everybody has a local repository
I Local branches are possible, and very important
I Easy exchange of code between developers
I Well-suited to the collaborative development model used in

open-source projects

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 469/496

Install and Setup

I Git is available as a package in your distribution
I sudo apt-get install git

I Everything is available through the git command
I git has many commands, called using git <command>, where

<command> can be clone, checkout, branch, etc.
I Help can be found for a given command using

git help <command>

I Setup your name and e-mail address
I They will be referenced in each of your commits
I git config --global user.name ’My Name’
I git config --global user.email me@mydomain.net

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 470/496

Clone a Repository

I To start working on a project, you use Git’s clone operation.

I With CVS or SVN, you would have used the checkout
operation, to get a working copy of the project (latest version)

I With Git, you get a full copy of the repository, including the
history, which allows to perform most of the operations offline.

I Cloning Linus Torvalds’ Linux kernel repository
git clone git://git.kernel.org/pub/scm/linux/

kernel/git/torvalds/linux.git

I git:// is a special Git protocol. Most repositories can also
be accessed using http://, but this is slower.

I After cloning, in linux/, you have the repository and a
working copy of the master branch.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 471/496

Explore the History

I git log will list all the commits. The latest commit is the
first.
commit 4371ee353c3fc41aad9458b8e8e627eb508bc9a3

Author: Florian Fainelli <florian@openwrt.org>

Date: Mon Jun 1 02:43:17 2009 -0700

MAINTAINERS: take maintainership of the cpmac Ethernet driver

This patch adds me as the maintainer of the CPMAC (AR7)

Ethernet driver.

Signed-off-by: Florian Fainelli <florian@openwrt.org>

Signed-off-by: David S. Miller <davem@davemloft.net>

I git log -p will list the commits with the corresponding diff
I The history in Git is not linear like in CVS or SVN, but it is a

graph of commits
I Makes it a little bit more complicated to understand at the

beginning
I But this is what allows the powerful features of Git

(distributed, branching, merging)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 472/496

Visualize the History: gitk

I gitk is a graphical tool that represents the history of the
current Git repository

I Can be installed from the gitk package

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 473/496

Visualize the History: gitweb

I Another great tool is the Web interface to Git. For the kernel,
it is available at http://git.kernel.org/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 474/496

http://git.kernel.org/

Update your Repository

I The repository that has been cloned at the beginning will
change over time

I Updating your local repository to reflect the changes of the
remote repository will be necessary from time to time

I git pull

I Internally, does two things
I Fetch the new changes from the remote repository

(git fetch)
I Merge them in the current branch (git merge)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 475/496

Tags

I The list of existing tags can be found using
I git tag -l

I To check out a working copy of the repository at a given tag
I git checkout <tagname>

I To get the list of changes between a given tag and the latest
available version

I git log v2.6.30..master

I List of changes with diff on a given file between two tags
I git log -p v2.6.29..v2.6.30 MAINTAINERS

I With gitk
I gitk v2.6.30..master

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 476/496

Branches

I To start working on something, the best is to make a branch
I It is local-only, nobody except you sees the branch
I It is fast
I It allows to split your work on different topics, try something

and throw it away
I It is cheap, so even if you think you’re doing something small

and quick, do a branch

I Unlike other version control systems, Git encourages the use
of branches. Don’t hesitate to use them.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 477/496

Branches

I Create a branch
I git branch <branchname>

I Move to this branch
I git checkout <branchname>

I Both at once (create and switch to branch)
I git checkout -b <branchname>

I List of local branches
I git branch

I List of all branches, including remote branches
I git branch -a

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 478/496

Making Changes

I Edit a file with your favorite text editor
I Get the status of your working copy

I git status

I Git has a feature called the index, which allows you to stage
your commits before committing them. It allows to commit
only part of your modifications, by file or even by chunk.

I On each modified file
I git add <filename>

I Then commit. No need to be on-line or connected to commit
I Linux requires the -s option to sign your changes
I git commit -s

I If all modified files should be part of the commit
I git commit -as

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 479/496

Sharing Changes: E-mail

I The simplest way of sharing a few changes is to send patches
by e-mail

I The first step is to generate the patches
I git format-patch -n master..<yourbranch>
I Will generate one patch for each of the commits done on

<yourbranch>
I The patch files will be 0001-...., 0002-...., etc.

I The second step is to send these patches by e-mail
I git send-email --compose --

to email@domain.com 00*.patch

I Required Ubuntu package: git-email
I In a later slide, we will see how to use git config to set the

SMTP server, port, user and password.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 480/496

Sharing Changes: Your Own Repository

I If you do a lot of changes and want to ease collaboration with
others, the best is to have your own public repository

I Use a git hosting service on the Internet:
I Gitorious (https://gitorious.org/)

I Open Source server. Easiest. For public repositories.
I GitHub (https://github.com/)

I For public repositories. Have to pay for private repositories.

I Publish on your own web server
I Easy to implement.
I Just needs git software on the server and ssh access.
I Drawback: only supports http cloning (less efficient)

I Set up your own git server
I Most flexible solution.
I Today’s best solutions are gitolite

(https://github.com/sitaramc/gitolite) for the server
and cgit for the web interface
(http://hjemli.net/git/cgit/).

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 481/496

https://gitorious.org/
https://github.com/
https://github.com/sitaramc/gitolite
http://hjemli.net/git/cgit/

Sharing changes: HTTP Hosting

I Create a bare version of your repository
I cd /tmp
I git clone --bare ~/project project.git
I touch project.git/git-daemon-export-ok

I Transfer the contents of project.git to a publicly-visible
place (reachable read-only by HTTP for everybody, and
read-write by you through SSH)

I Tell people to clone
http://yourhost.com/path/to/project.git

I Push your changes using
I git push ssh://yourhost.com/path/toproject.git

srcbranch:destbranch

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 482/496

http://yourhost.com/path/to/project.git

Tracking Remote Trees

I In addition to the official Linus Torvalds tree, you might want
to use other development or experimental trees

I The OMAP tree at git://git.kernel.org/pub/scm/
linux/kernel/git/tmlind/linux-omap.git

I The stable realtime tree at git://git.kernel.org/pub/
scm/linux/kernel/git/rt/linux-stable-rt.git

I The git remote command allows to manage remote trees
I git remote add rt git://git.kernel.org/pub/scm/

linux/kernel/git/rt/linux-stable-rt.git

I Get the contents of the tree
I git fetch rt

I Switch to one of the branches
I git checkout rt/master

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 483/496

Contribute to the Linux Kernel (1)

I Clone Linus Torvalds’ tree:
I git clone git://git.kernel.org/pub/scm/linux/

kernel/git/torvalds/linux.git

I Keep your tree up to date
I git pull

I Look at the master branch and check whether your issue /
change hasn’t been solved / implemented yet. Also check the
maintainer’s git tree and mailing list (see the MAINTAINERS

file).You may miss submissions that are not in mainline yet.
I If the maintainer has its own git tree, create a remote branch

tracking this tree. This is much better than creating another
clone (doesn’t duplicate common stuff):

I git remote add linux-omap git://git.kernel.org/

pub/scm/linux/kernel/git/tmlind/linux-omap.git
I git fetch linux-omap

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 484/496

Contribute to the Linux Kernel (2)

I Either create a new branch starting from the current commit
in the master branch:

I git checkout -b feature

I Or, if more appropriate, create a new branch starting from the
maintainer’s master branch:

I git checkout -b feature linux-omap/master (remote
tree / remote branch)

I In your new branch, implement your changes.

I Test your changes (must at least compile them).

I Run git add to add any new files to the index.
I Check that each file you modified is ready for submission:

I scripts/check_patch.pl --strict --file <file>

I If needed, fix indenting rule violations:
I indent -linux <file>

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 485/496

Configure git send-email

I Make sure you already have configured your name and e-mail
address (should be done before the first commit).

I git config --global user.name ’My Name’
I git config --global user.email me@mydomain.net

I Configure your SMTP settings. Example for a Google Mail
account:

I git config --

global sendemail.smtpserver smtp.googlemail.com
I git config --global sendemail.smtpserverport 587
I git config --global sendemail.smtpencryption tls
I git config --

global sendemail.smtpuser jdoe@gmail.com
I git config --global sendemail.smtppass xxx

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 486/496

Contribute to the Linux Kernel (3)

I Group your changes by sets of logical changes, corresponding
to the set of patches that you wish to submit.

I Commit and sign these groups of changes (signing required by
Linux developers).

I git commit -s
I Make sure your first description line is a useful summary and

starts with the name of the modified subsystem. This first
description line will appear in your e-mails

I The easiest way is to look at previous commit summaries on
the main file you modify

I git log --pretty=oneline <path-to-file>

I Examples subject lines ([PATCH] omitted):

Documentation: prctl/seccomp_filter

PCI: release busn when removing bus

ARM: add support for xz kernel decompression

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 487/496

Contribute to the Linux Kernel (4)

I Remove previously generated patches
I rm 00*.patch

I Have git generate patches corresponding to your branch
I If your branch is based on mainline

I git format-patch master..<your branch>

I If your branch is based on a remote branch
I git format-patch <remote>/<branch>..<your branch>

I You can run a last check on all your patches (easy)
I scripts/check_patch.pl --strict 00*.patch

I Now, send your patches to yourself
I git send-email --compose --

to me@mydomain.com 00*.patch

I If you have just one patch, or a trivial patch, you can remove
the empty line after In-Reply-To:. This way, you won’t add
a summary e-mail introducing your changes (recommended
otherwise).

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 488/496

Contribute to the Linux Kernel (5)

I Check that you received your e-mail properly, and that it looks
good.

I Now, find the maintainers for your patches
scripts/get_maintainer.pl ~/patches/00*.patch

Russell King <linux@arm.linux.org.uk> (maintainer:ARM PORT)

Nicolas Pitre <nicolas.pitre@linaro.org>

(commit_signer:1/1=100%)

linux-arm-kernel@lists.infradead.org (open list:ARM PORT)

linux-kernel@vger.kernel.org (open list)

I Now, send your patches to each of these people and lists
I git send-email --compose --to linux@arm.linux.

org.uk --to nicolas.pitre@linaro.org --to linux-

arm-kernel@lists.infradead.org --to linux-

kernel@vger.kernel.org 00*.patch

I Wait for replies about your changes, take the comments into
account, and resubmit if needed, until your changes are
eventually accepted.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 489/496

Contribute to the Linux Kernel (6)

I If you use git format-patch to produce your patches, you
will need to update your branch and may need to group your
changes in a different way (one patch per commit).

I Here’s what we recommend
I Update your master branch

I git checkout master; git pull

I Back to your branch, implement the changes taking
community feedback into account. Commit these changes.

I Still in your branch: reorganize your commits and commit
messages

I git rebase --interactive origin/master
I git rebase allows to rebase (replay) your changes starting

from the latest commits in master. In interactive mode, it also
allows you to merge, edit and even reorder commits, in an
interactive way.

I Third, generate the new patches with git format-patch.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 490/496

About Git

I We have just seen the very basic features of Git.

I A lot more interesting features are available (rebasing,
bisection, merging and more)

I References
I Git Manual

I http://schacon.github.com/git/user-manual.html

I Git Book
I http://book.git-scm.com/

I Git official website
I http://git-scm.com/

I Video: James Bottomley’s tutorial on using Git
I http://free-electrons.com/pub/video/2008/ols/

ols2008-james-bottomley-git.ogg

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 491/496

http://schacon.github.com/git/user-manual.html
http://book.git-scm.com/
http://git-scm.com/
http://free-electrons.com/pub/video/2008/ols/ols2008-james-bottomley-git.ogg
http://free-electrons.com/pub/video/2008/ols/ols2008-james-bottomley-git.ogg

Practical lab - Git

I Get familiar with git by
contributing to a real project: the
Linux kernel

I Send your patches to the
maintainers and mailing lists.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 492/496

Last slides

Last slides
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni
Free Electrons

c© Copyright 2004-2013, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 493/496

Practical lab - Archive your lab directory

I Clean up files that are easy to
retrieve, remove downloads.

I Generate an archive of your lab
directory.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 494/496

Evaluation form

Please take a few minutes to rate this training session, by
answering our on-line survey:
http://free-electrons.com/doc/training/linux-kernel/survey.html

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 495/496

http://free-electrons.com/doc/training/linux-kernel/survey.html

Last slide

Thank you!
And may the Source be with you

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 496/496

	Generic course information
	Linux Kernel Introduction
	Linux features
	Linux versioning scheme and development process

	Embedded Linux Kernel Usage
	Linux kernel sources

	Kernel Source Code
	Linux Code and Device Drivers
	Linux sources
	Kernel source management tools
	Kernel configuration
	Compiling and installing the kernel for the host system
	Cross-compiling the kernel
	Using kernel modules

	Embedded Linux driver development
	Loadable Kernel Modules
	Memory Management
	Useful general-purpose kernel APIs
	I/O Memory and Ports
	Device Files
	Character drivers
	Processes and scheduling
	Sleeping
	Interrupt Management
	Concurrent Access to Resources
	Debugging and tracing
	mmap
	DMA
	Kernel Architecture for Device Drivers

	Serial Drivers
	Kernel Initialization
	Porting the Linux Kernel to an ARM Board
	Power Management
	Kernel Advice and Resources
	Advice
	References

	Introduction to Git
	Last slides

