
ARTICLE TITLE: POWER MANAGEMENT
STATES: P-STATES, C-STATES, AND
PACKAGE C-STATES

Contents
Preface: What, Why and from Where .. 1

Chapter 1: Introduction and Inquiring Minds ... 2

Chapter 2: P-States: Reducing Power Consumption Without Impacting Performance 3

Chapter 3: Core C-States - The Details .. 5

Chapter 4: Package C-States - The Details .. 8

Chapter 5: An Intuitive Description of Power States Using Stick Figures and Light Bulbs 12

Summary ... 15

Appendix: C-States, P-States, where the heck are those T-States? .. 16

References .. 18

Endnotes ... 18

Preface: What, Why and from Where

This is an aggregate of a series of blogs I wrote on power management states. That series is part of an

even larger collection of blogs addressing all sorts of power management topics including power

management states (this one), turbo / hyper-threading power states, power management configuration,

and power management policy. With one exception, the discussion in these blogs should be generally

useful to everyone, even though they concentrate on the Intel® Xeon Phi™ coprocessor. The exception is

the series on configuration, which by its nature, is a more platform dependent topic and focused on the

Intel® Xeon Phi™ coprocessor and the Intel® Manycore Platform Software Stack (MPSS). In addition to

this collection of power management blogs, there are two other companion collections: a series on

different techniques for measuring power performancei, and another loose set of my earlier blogs that

cover a variety of topics such as where C*V2*f comes from.

The article you are currently reading was originally published as the following series of 5 somewhat

inconsistently entitled blogs:

 Intel Xeon Phi coprocessor Power Management Pt 0: Introduction and inquiring minds

http://software.intel.com/en-us/blogs/2013/03/24/intel-xeon-phi-coprocessor-power-management-pt-0-introduction-and-inquiring-minds

 Intel Xeon Phi coprocessor Power Management Part 1: P-States, Reducing power consumption

without impacting performance

 Intel Xeon Phi coprocessor Power Management Part 2a: Core C-States, The Details

 Intel Xeon Phi coprocessor Power Management Part 2b: Package C-States, The Details

 Intel Xeon Phi coprocessor Power Management Part 3: An Intuitive Description of Power States

Using Stick Figures and Light Bulbs

In addition to these, there is a bonus article in an appendix:

 C-States, P-States, where the heck are those T-States?

At the Intel® Developer Zone, you can find the individual blogs listed in yet another article, List of Useful

Power and Power Management Articles, Blogs and References.

So kick your feet up, lean back, and enjoy this look at the ever fascinating topic of power management.

Chapter 1: Introduction and Inquiring

Minds

So exactly which power states exist on the Intel Xeon Phi coprocessor? What happens in each of the

power states? Inquiring minds want to know. And since you are, no doubt, aggressively involved in high

performance computing (HPC), I am sure you want to know also.

This is not going to be a high powered, in depth, up-to-your-neck-in-technical-detail type of treatise on

power management (PM). If you want that, I suggest you read the Intel Xeon Phi Coprocessor Software

Developer’s Guide (SDG)ii. As a word of warning, when the Power Management section of the SDG refers

to writers of SW (i.e. programmers), whether explicitly or implicitly, they do not refer to you or me. Its

target audience consists of those poor lost souls that design operating systems (OSs) and drivers. (By the

way, in an earlier life, I was one of those “poor lost souls.”) One of the objectives of the series of blogs

you are now reading is to look at PM from the perspective of an application developer, i.e. you or I, and

not a writer of operating systems or drivers.

I am also not going to talk to what C, P and PC-states are. If you want an introduction to these concepts

before digging into this blog series, I recommend (humbly) an earlier blog series I wrote on just that

topic. See http://software.intel.com/en-us/user/266847/track. It is a little hard to separate the relevant

power management blogs from all my other forum posts and videos, so I list the most important ones in

this endnoteiii.

Briefly, the coprocessor has package-based P-states, core-based C-states (which are sometimes referred

to as CC-states) and package-based C-states (PC-states). It also has the capability to operate in Turbo

mode3. There are no per-core based P-states.

http://software.intel.com/en-us/blogs/2013/05/15/intel-xeon-phi-coprocessor-power-management-part-1-p-states-reducing-power
http://software.intel.com/en-us/blogs/2013/05/15/intel-xeon-phi-coprocessor-power-management-part-1-p-states-reducing-power
http://software.intel.com/en-us/blogs/2013/06/03/intel-xeon-phi-coprocessor-power-management-part-2a-core-c-states-the-details
http://software.intel.com/en-us/blogs/2013/06/18/title-intel-xeon-phi-coprocessor-power-management-part-2b-package-c-states-the
http://software.intel.com/en-us/blogs/2013/09/06/intel-xeon-phi-coprocessor-power-management-part-3-an-intuitive-description-of
http://software.intel.com/en-us/blogs/2013/09/06/intel-xeon-phi-coprocessor-power-management-part-3-an-intuitive-description-of
http://software.intel.com/en-us/blogs/2013/10/15/c-states-p-states-where-the-heck-are-those-t-states
http://software.intel.com/en-us/articles/list-of-useful-power-and-power-management-articles-blogs-and-references
http://software.intel.com/en-us/articles/list-of-useful-power-and-power-management-articles-blogs-and-references
http://software.intel.com/en-us/user/266847/track

The host and coprocessor share responsibility for power management on the coprocessor. For some PM

activities, the coprocessor operates alone. For others, the host component acts as a gate keeper,

sometimes controlling PM, and at other times overriding actions taken by the coprocessor’s PM.

In the forthcoming series, I discuss package-based P-states (including Turbo modeiv), core-based C-states

and package-based PC-states. I will also discuss what control you have as an application developer over

coprocessor PM.

Here is one last note. I cannot guarantee that all the Intel Xeon Phi coprocessor SKUs (i.e. coprocessor

types) expose these power management features.

Chapter 2: P-States: Reducing Power

Consumption without Impacting

Performance

Right up front, I am going to tell you that P-states are irrelevant, meaning they will not impact the

performance of your HPC application. Nevertheless, they are important to your application in a more

roundabout way. Since most of you belong to a group of untrusting and always questioning skeptics (i.e.

engineers and scientists), I am going to go through the unnecessary exercise of justifying my claim.

The P-states are voltage-frequency pairs that set the speed and power consumption of the coprocessor.

When the operating voltage of the processor is lower, so is the power consumption. (One of my earlier

blogs explains why at a high though technical level.) Since the frequency is lowered in tandem with the

voltage, the lower frequency results in slower computation. I can see the thought bubble appearing over

your head: “Under what situations would I ever want to enable P-states and, so, possibly reduce the

performance of my HPC app?” Having P-states is less important in the HPC domain than in less

computationally intense environments, such as client-based computing and data-bound servers. But

even in the coprocessor’s HPC environment, longer quiescent states are common between large

computational tasks. For example, if you are using the offload model, the coprocessor is likely unused

during the periods between offloads. Also, a native application executing on the coprocessor will often

be in a quiescent phase for many reasons, such as their having to wait for the next chunk of data to

process.

The P-states the coprocessor Power Management (PM) supports is P0 through Pn. The number of P-

states a given coprocessor SKU (i.e. type) supports will vary, but there are always at least two. Similarly,

some SKUs will support turbo P-states. The coprocessor’s PM SW handles the transition from one P-

state to another. The host’s PM SW has little if any involvement.

A natural thing to wonder is how much this is going to impact performance; we do happen to be

working in an HPC environment. The simple answer is that there is, in any practical sense, no impact on

HPC performance. I am sure that, at this point, you are asking yourself a series of important questions:

(a) “Wait a minute; how can this be? If the coprocessor is slowing down the processor by reducing the

frequency, how can this not affect the performance of my application?”

(b) “I just want my application to run as fast as possible. Why would I want to reduce power

consumption at all?”

Let us first consider (b). I understand that power is not a direct priority for you as an application writer.

Even so, it does impact your application’s performance indirectly. More power consumption has to do

with all that distant stuff, like higher facility costs in terms of electricity usage due to greater air-

conditioning demands, facility space needs, etc. It is simply part of that unimportant stuff

administrators, system architects, and facilities management worry about.

Truth be told, you need to worry about it also. This does impact your application in a very important

way, though how is not initially obvious. If the facility can get power consumption down while not losing

performance, this means that it can pack more processors in the same amount of space all while using

the same power budget. To use another American idiom, you get more “bang for the buck.” And this is a

good thing for you as a programmer/scientist. When you get right down to it, lower power requirements

mean that you can have more processors running in a smaller space, which means that you, as an

application designer/scientist, can run not only bigger problems (more cores) but run them faster (less

communication latency between those more cores).

Let us go back to P-states. P-states will impact performance in a theoretical sense, but not in a way that

is relevant to an HPC application. How is this possible? It is because of how transitions between the P-

states happen. It all has to do with processor utilization. The PM SW periodically monitors the processor

utilization. If that utilization is less than a certain threshold, it increases the P-state, that is, it enters the

next higher power efficiency state. The word term in the previous sentence is “utilization”. When

executing your computationally intensive HPC task on the coprocessor, what do you want your

utilization to be? Ideally, you want it to be as close to 100% as you can get. Given this maximal

utilization, what do you imagine is the P-state your app is executing in? Well, it is P0, the fastest P-state

(ignoring turbo mode). Ergo, the more energy efficient P-states are irrelevant to your application since

there is almost never a situation where a processor supporting your well-tuned HPC app will enter one

of them.

So in summary, the “HPC” portions of an HPC application will run near 100% utilization. Near 100%

utilization pretty much guarantees always using the fastest (non-turbo) P-state, P0. Ergo, P-states have

essentially no impact upon the performance of an HPC application.

How do I get my application to run in one of those turbo modes? You cannot as it is just too dangerous.

It is too easy to make a minor mistake resulting in overheating and damaging the coprocessor. If your

processor supports turbo, leave its management to the OS.

Chapter 3: Core C-States - The Details

BACKGROUND: A QUICK REFRESHER ON IDLE STATES

Here is a quick summary of what C-states are. C-states are idle power saving states, in contrast to P-

states, which are execution power saving states. During a P-state, the processor is still executing

instructions, whereas during a C-state (other than C0), the processor is idle, meaning that nothing is

executing. To make a quick analogy, a processor lying idle is like a house with all the lights on when no

one is at home. Consuming all that power is doing nothing other than providing your electric company a

little extra income. What is the best option? If no one is at home, meaning the house is idle, why leave

the lights on? The same applies to a processor. If no one is using it, why keep the unused circuits

powered up and consuming energy? Shut them down and save.

C0 is the “null” idle power state, meaning it is the non-idle state when the core is actually executing and

not idle.

THE DIFFERENCE BETWEEN CORE AND PACKAGE IDLE STATES

The coprocessor has up to 60+ cores in one package. Core idle power states (C-states) are per core,

meaning that one of those 60+ cores can be in C0, i.e. it is executing and not idle, while the one right

next door is in a deep power conservation state of C6. In contrast, PC-states are Package idle states

which are idle power conservation states for the entire package, meaning all 60+ cores and supporting

circuitry on the silicon. As you can guess, to drop the package into a PC-6 state, all the cores must also

be in a C6 state. Why? Since the package has functionality that supports all the cores, to “turn off” some

package circuitry impacts all of them.

Figure 1. Dropping a core into a core-C1 state

WHAT CORE IDLE STATES ARE THERE?

Each core has 2 idle states, C1 and C6 (and, of course, C0).

C0 to Core-C1 Transition: Look at Figure 1. C1 happens when all 4 hardware (HW) threads supported by

a core have executed a HALT instruction. At this point, let us now think of each of the 4 HW threads as

the Operating System (OS) perceives them, namely as 4 separate CPUs (CPU 0 through 3). Step 1: the

first three CPUs belonging to that core execute their HALT instruction. Step 2: that last CPU, CPU-0 in the

illustration, attempts to execute its HALT instruction. Step 3: it interrupts to an idle residency data

collection routine. This routine collects, you guessed it, idle residency data and stores that data in a data

structure accessible to the OS. CPU 0 then HALTs. Step 4: at this point, all the CPUs are halted and the

core enters a core-C1 state. In the core-C1 state, the core (and its “CPUs”) is clock gatedv.

Figure 2. Is it worth entering C6: Is the next interrupted far enough out?

Figure 3. Is it worth entering C6: Is the estimated idle time high enough?

After entering core-C1: Now that the core is in C1, the coprocessor’s Power Management routine comes

into play. It needs to figure out whether it is worthwhile to shut the core down further and drop it into a

core-C6 state. In a core-C6 state, further parts of the core are shut down and power gated. Remember

that the coprocessor’s Power Management SW executes on the OS core, typically core 0, and is not

affected by the shutdown of other cores.

What type of decisions does the coprocessor’s Power Management have to make? There are two

primary ones as we discussed in the last chapter: Question#1: Will there (probably) be a net power

savings? Question #2: Will any restart latency adversely affect the performance of the processor or of

applications executing on the processor? Those decisions correspond to two major scenarios and are

shown in Figures 2 and 3 above. Scenario 1 is where the coprocessor PM looks at how far away is the

next scheduled or expected interrupt. If that interrupt is soon enough, it may not be worth shutting

down the core further and suffering the added latency caused by bringing the core back up to C0. As is

the case in life, the processor can never get anything for free. The price of dropping into a deeper C

state is an added latency resulting from bringing the core/package back up to the non-idle state.

Scenario 2 is where the coprocessor’s Power Management looks at the history of core activity (meaning

its HW threads) and figures out whether the execution (C0) and idle (C1) patterns of the core make core-

C6 power savings worthwhile.

If the answers to both of these questions are “yes”, then the core drops down into a core-C6 state.

After entering core-C6: Well dear reader, it looks like I have run out of time. The processor next decides

if it can drop into the package idle states. I will cover that discussion in my next blog in this series.

Chapter 4: Package C-States - The Details

TERMINOLOGY NOTE:

Upon reading the SDG (Intel Xeon Phi Coprocessor Software Developer’s Guide), you’ll find a variety of

confusing names and acronyms. Here’s my decoder ring:

Package Auto C3vi: also referred to as Auto-C3, AutoC3, PC3, C3, Auto-PC3 and Package C3

Package Deep-C3: also referred to as PC3, DeepC3, DeeperC3, Deep PC3 and Package C3 (No, I am not

repeating myself.)

Package C6: Also referred to as PC6 and C6 and Package C6.

BACKGROUND: WHAT THE HECK IS THE “UNCORE”?

Before we dig deep into package C-states, I want to give you some background about circuitry on a

modern Intel® processor. A natural way of dividing up the circuitry of a processor is that composing the

cores -- basically that supporting the pipeline, ALUs, registers, cache, etc. -- and everything else

(supporting circuitry). It turns out that “everything else” can be further divided into that support

circuitry not directly related to performance (e.g. PCI Express* interfacing), and that which is (e.g. the

bus connecting cores). Intel calls support circuitry that directly impacts the performance of an optimized

application the “Uncore”.

Figure 4. Circuitry types on the coprocessor

Since that is out of the way, let us get back to package C-states.

WHY DO WE NEED PACKAGE C-STATES?

After gating the clocks of every one of the cores, what other techniques can you use to get even more

power savings? Here’s a trivial and admittedly flippant example of what you could do: unplug the

processor. You’d be using no power, though the disadvantages of pulling the power plug are pretty

obvious. A better idea is to selectively shutdown the more global components of the processor in such a

way that you can bring the processor back up to a fully functional state (i.e. C0) relatively quickly.

Package C-States are just that - the progressive shutdown of additional circuitry to get even more

savings. Since we have already shut down the entire package’s circuitry associated with the cores, the

remaining circuitry is necessarily common to all the cores, thus the name “package” C-states.

WHAT PACKAGE IDLE STATES ARE THERE?

My dear readers, there are 3 package C states: Auto-C3, Deep-C3, and (package) C6. As a reminder, all

these are package C-states, meaning that all the threads/CPUs in all the cores are in a HALT state. I know

what you are thinking. “If all the cores in the coprocessor are in a HALT state, how can the Power

Management (PM) software (SW) run?” That’s a good question. The answer is obvious once you think

on it. If the PM SW can’t run on the coprocessor, where can it run? It runs on the host, of course.

Figure 5. Coprocessor and host power management responsibilities and control

There are two parts to controlling power management on the Intel® Xeon Phi™ coprocessor, the PM SW

that runs on the coprocessor, and the PM component of the MPSS Coprocessor Driver that runs on the

host. See figure 1. The coprocessor part controls transitions into and out of the various core C-states.

Naturally, when it is not possible for the PM SW to run on the coprocessor, such as for package Deep-C3

and package C6, the host takes over. Package Auto-C3 is shared by both.

WHAT IS SHUT DOWN IN THE PACKAGE C-STATES?

I was going to rewrite this table but it is so clear, I am stealing it instead. It is Table 3-2 of the Intel® Xeon

Phi™ Coprocessor Software Developer’s Guide (SDG).

Package

Idle State

Core

State

Uncore

State

TSC/LAPIC C3WakeupTimer PCI

Express*

Traffic

PC3 Preserved Preserved Frozen On expiration,

package exits PC3

Package exits

PC3

Deep C3 Preserved Preserved Frozen No effect Times out

PC6 Lost Lost Reset No effect Times out

And for those of you who want a little more detail:

Package Auto-C3: Ring and Uncore clock gated

Package Deep-C3: VccP reduced

Package C6: VccP is off (I.e. Cores, Ring and Uncore are powered down)

TSC and LAPIC are clocks which stop when the Uncore is shutdown. They have to be set appropriately

when the package is reactivated. “PC3” is the same as the package Auto-C3 state.

HOW IDLE PACKAGE C-STATE TRANSITIONS ARE DETERMINED

Into Package Auto-C3: You can think of the first package state, Auto-C3, as a transition state. The

coprocessor PM SW can initiate a transition into this state. The MPSS PM SW can override this request

under certain conditions, such as when the host knows that the Uncore part of the coprocessor is still

busy.

We will also see that the package Auto-C3 state is the only package state that can be initiated by the

coprocessor’s power management. Though this seems a little unfair at first, upon further thinking the

reason is obvious. At the start of a transition into package Auto-C3, the coprocessor SW PM routine is

running and can initiate the transition into the first package state. (To be technically accurate, the core

executing the PM SW can transition quickly out of a core C-state into C0 quickly)

Beneath Auto-C3, the coprocessor isn’t executing and transitions to deeper package C-states are best

controlled by the host PM SW. Not only is this due to the coprocessor’s own PM SW is essentially

suspended, but because the host can see what is happening in a more global sense, such as Uncore

activity after all the cores are gated, and traffic across the PCI Express bus.

Into Package Deep-C3: The host’s coprocessor PM SW looks at idle residency history, interrupts (such as

PCI* Express traffic), and the cost of waking the coprocessor up from package Deep-C3 to decide

whether to transition the coprocessor from a package Auto-C3 state into a package Deep-C3 state.

Into Package C6: Same as the Package Deep-C3 transition but only more so.

Chapter 5: An Intuitive Description of Power

States Using Stick Figures and Light Bulbs

AN INTUITIVE ILLUSTRATION OF A CORE AND ITS HW THREADS

This is the fourth installment of a series of blogs on Power Management for the Intel Xeon Phi

coprocessor.

For those of you who have read my blog presenting an intuitive introduction to the Intel Xeon Phi

coprocessor, The Intel Xeon Phi coprocessor: What is it and why should I care? PART 3: Splitting Hares

and Tortoises too, I irreverently referred to “diligent high tech workers who labor ceaselessly for their

corporate masters”. Let’s take this description a little further. In Figure A, we have one such diligent high

tech worker. He is analogous to one coprocessor CPU/HW thread.

Figure 6. Diligent high tech worker, i.e. an Intel® Xeon Phi™ HW thread

http://software.intel.com/en-us/blogs/2013/04/19/the-intel-xeon-phi-coprocessor-what-is-it-and-why-should-i-care-part-3-splitting
http://software.intel.com/en-us/blogs/2013/04/19/the-intel-xeon-phi-coprocessor-what-is-it-and-why-should-i-care-part-3-splitting

There are 4 HW threads to a core. See Figure B. It’s pretty obvious so I’m not going to bother with a

multipage boring description of what it means. There is also that mysterious light bulb. The light bulb

represents the infrastructure that supports the core, such as timing and power circuits.

Figure 7. Diligent high tech workers in a room, i.e. an Intel® Xeon Phi™ coprocessor core

POWER MANAGEMENT: Core C0 and C1

So what does all this have to do with power management? Though it is sometimes assumed by the

lower paid liberal arts students that engineers are unimaginative and boring, you and I know that,

though boring we may be, we are not unimaginative. With this in mind, I ask you to visualize that on

every one of those desks is a computer and a desk light.

The Core in C0: When at least one of the high tech workers is diligently working at their task. (I.e. At

least one of the core’s CPUs/HW threads is executing instructions.)

CPU Executing a HALT: When one of those diligent workers finishes his task, he turns out his desk

lamp, shuts down his computer, and leaves. (I.e. one of the HW threads executes a HALT instruction.)

Entering Core-C1: When all four diligent workers finish their tasks, they all execute HALT instructions.

The last one finishing turns off the lights. (I.e. The core is clock gated.)

POWER MANAGEMENT: Core-C6

Entering Core-C6: Yes, I know it’s blatantly obvious, but I like talking to myself. As time proceeds,

everyone leaves for lunch. Since no one is in the office, we can shut things down even further in the

rooms (i.e. power gating). Remember, though, that they are coming back after lunch so anything shut

down must be able to be powered back up quickly.

Figure 8. A building full of diligent high tech workers, i.e. an Intel® Xeon Phi™ coprocessor

POWER MANAGEMENT: Package Auto-C3, Package Deep-C3 and Package C6

Now I’m going to stretch this analogy a little bit, but since it is fun, I’m going to keep on going.

Let’s expand this very creative analogy. Imagine if you will, a building with many rooms, 60+ in point of

fact. See Figure C. Yes, I know that here in Silicon Valley, diligent high tech workers work in luxurious

cubes, not stuffy offices. Unfortunately, the analogy breaks down at that point so I am sticking with

communal offices.

Entering Package Auto-C3: Everyone has left the floor, so the movement sensor automatically shut off

the floor lights. (I.e. the coprocessor power management software clock gates the Uncore and other

support circuitry on the silicon).

Entering Package Deep-C3: It’s the weekend so facilities (i.e. the MPSS Coprocessor Driver Power

Management module) shuts down the air condition and phone services. (I.e. the host reduces the

coprocessor’s VccP and has it ignore interrupts.)

Entering Package C6: It’s Christmas week shutdown and forced vacation time, so facilities turns off all

electricity, air condition, phones, servers, elevators, toilets, etc. (I.e. the host turns off the coprocessor’s

Vccp and shuts down its monitoring of PCI Express* traffic.)

POWER MANAGEMENT: Getting Obsessive

Having fun with this analogy, I was thinking of extending it further into industrial campuses (a node

containing multiple coprocessors), international engineering divisions (clusters with each node

containing multiple coprocessors) and contracting with external partners (distributed WAN processing).

Sanity and common sense prevailed and I leave the analogy as is.

Summary

We discussed the different types of power management states. Though the concepts are general, we

concentrated on a specific platform, the Intel® Xeon Phi™ coprocessor. Most modern processors, be

they Intel Corporation, AMD* or embedded, have such states with some variation.

Intel® processors have two types of power management states, P-states (runtime) and C-states (idle).

The C-states are then divided into two more categories, core and package. P-states are runtime (C0)

states and reduce power by slowing the processor down and reducing its voltage. C-states are idle states

meaning that they shutdown parts of the processor when the cores are unused. There are two types of

C-states. Core C-states shutdown parts of individual cores/CPUs. Since modern processors have multiple

cores, package C-states shutdown the circuitry that supports those cores.

The net effect of these power states is to substantially reduce the power and energy usage of modern

Intel® processors. This energy reduction can be considerable, in some cases by over an order of

magnitude.

The impact of these power savings cannot be over stated for all platforms from smart phones to HPC

clusters. For example, by reducing the power and energy consumption of the individual processors in an

HPC cluster, the same facility can support more processors. This increases processor density, reduces

communication times between nodes, and makes possible a much more powerful machine that can

address larger and more complex problems. At the opposite end in portable passively cooled devices

such as smart phones and tablets, reduced power and energy usage lengthens battery life and reduces

cooling issues. This allows more powerful processors which in turn increases the capability of such

devices.

Appendix: C-States, P-States, where the heck

are those T-States?

I had an interesting question come across my desk a few days ago: “Is it still worthwhile to understand

T-states?” My first response was to think, “Huh? What the heck is a T-state?”

Doing a little more research, I discovered that, yes, there is something called a T-state, and no, it really

isn’t relevant any more, at least for mainline Intel® processors.

Let me say this again: T-States are no longer relevant!

Now that the purely practical people have drifted off to other more “relevant” activities, here’s

something for all you power management history buffs.

A T-state was once known as a Throttling state. Back in the days before C and P states, T-states existed

to save processors from burning themselves up when things went very badly, such as when the cooling

fan failed while the processor was running as fast as she could. If a simple well placed temperature

sensor registered that the junction temperature was reaching a level that could cause damage to the

package or its contents, the HW power manager would place the processor in different T-States

depending upon temperature; the higher the temperature, the higher the T-State.

As you probably already guessed, the normal run state of the processor was T0. When the processor

entered a higher T-state, the manager would clock gate the cores to slowdown execution and allow the

processor to “relax” and cool. For example, in T1 the HW power manager might clock gate 12% of the

cycles. In rough terms, this means that the core will run for 78% of the time and sleep for the rest. T2

might clock gate 25% of the cycles, etc. In the very highest T-state, over 90% of the cycles might be clock

gated. (See the figure below.)

Figure 9. Running Time for T0/P0, P1, and T1 States

Note that in contrast to P-states, the voltage and frequency are not changed. Also, using T-states the

application runs slower not because the processor is running slower, but because it is suspended for

some percent of the time. In some ways, you can think of a T-state as being like a clock gated C1 state

with the processor not being idle, i.e. it is still doing something useful.

In the figure above, the top most area shows the runtime of a compute intensive workload if no thermal

overload occurs. The bottom shows the situation with T states (i.e. before P states), where the processor

begins to toggle between running and stopped states to cool down the processor. The middle is what

happens in current processors, where the frequency/voltage pair is reduced allowing the processor to

cool.

For those of you who have borne with me for the history lesson, there are a few more practical reasons

you should be at least aware of T-states.

(1) Some technical literature now uses the term “throttling states” to mean P-states, not T-states.

(2) Some power management data structures, such as some defined by ACPI, still include an unused T-

state field. Many inquiries about T-states originate from this little fact.

(3) I suspect that T-states are still relevant in some embedded processors

References

Kidd, Taylor (10/23/13) - “List of Useful Power and Power Management Articles, Blogs and References,”

http://software.intel.com/en-us/articles/list-of-useful-power-and-power-management-articles-blogs-

and-references, downloaded 3/24/2014.

For those of you with a passion for power management, check out the Intel Xeon Phi Coprocessor

Software Developer’s Guide. It has state diagrams and other goodies. I recommend sections 2.1.13,

“Power Management”, and all of section 3.1, “Power Management (PM)” for your late night reading.

NOTE: As previously in my blogs, any illustrations can be blamed solely on me as no copyright has been

infringed or artistic ability shown.

Endnotes

i
 I expect to publish these blogs over the May / June 2014 time frame.
ii
 http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-system-software-developers-guide

iii
 Here is a list of my most relevant earlier blogs

http://software.intel.com/en-us/blogs/2008/03/04/introduction-to-power-management-on-intel-processors
http://software.intel.com/en-us/blogs/2008/05/29/what-exactly-is-a-p-state-pt-1
http://software.intel.com/en-us/blogs/2008/03/27/update-c-states-c-states-and-even-more-c-states
http://software.intel.com/en-us/blogs/2008/04/29/theres-got-to-be-a-catch
http://software.intel.com/en-us/blogs/2008/05/29/what-exactly-is-a-p-state-pt-1
http://software.intel.com/en-us/blogs/2008/08/15/so-how-are-p-states-related-to-power-management
http://software.intel.com/en-us/blogs/2008/07/31/can-p-states-save-overall-energy
iv
 For those that need a quick refresher, turbo mode is a set of over-clocked P-states that exceed the normal power

limits of the silicon. If normally run in this P-state, the silicon would over heat and potentially burn up. Turbo is
possible because these normal power limits are computed based upon every core running at maximum
performance. There are many situations where the entire power budget is not utilized. In these cases, the power
management SW can allow a temporary overclocking.
v
 CPUs have at least one oscillator (clock) that emits a timing pulse. The circuits of the processor use this timing

pulse to coordinate all activities.

http://software.intel.com/en-us/articles/list-of-useful-power-and-power-management-articles-blogs-and-references
http://software.intel.com/en-us/articles/list-of-useful-power-and-power-management-articles-blogs-and-references
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-system-software-developers-guide
http://software.intel.com/en-us/blogs/2008/03/04/introduction-to-power-management-on-intel-processors
http://software.intel.com/en-us/blogs/2008/05/29/what-exactly-is-a-p-state-pt-1
http://software.intel.com/en-us/blogs/2008/03/27/update-c-states-c-states-and-even-more-c-states
http://software.intel.com/en-us/blogs/2008/04/29/theres-got-to-be-a-catch
http://software.intel.com/en-us/blogs/2008/05/29/what-exactly-is-a-p-state-pt-1
http://software.intel.com/en-us/blogs/2008/08/15/so-how-are-p-states-related-to-power-management
http://software.intel.com/en-us/blogs/2008/07/31/can-p-states-save-overall-energy

vi
 Auto-PC3 may have been removed as of MPSS 3.1. Even so, it is worthy of a discussion as it illustrates the impact

of latency and local vs remote management

About the Author

Taylor Kidd is an Intel application engineer. His interest
is in high performance computing architectures and
optimization. His background includes application
development, research and teaching in the areas of
embedded systems, distributed operating systems and
computer architectures. He got his Ph.D. from UCSD
and proudly points to his training as an electronic
technician. He currently writes a blog on power
management within Intel processors.

Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED

BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH

PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED

WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES

RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY

PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or

indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH

MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,

SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS

AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT

OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN

ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR

WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS

PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must

not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined".

Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or

incompatibilities arising from future changes to them. The information here is subject to change without

notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may

cause the product to deviate from published specifications. Current characterized errata are available on

request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing

your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel

literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel, the Intel logo, VTune, Phi and Xeon are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others

Copyright© 2014 Intel Corporation. All rights reserved.

Performance Notice
For more complete information about performance and benchmark results, visit

www.intel.com/benchmarks

Optimization Notice
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

